

CMPA901A035F

35 W, 9.0 - 11.0 GHz, GaN MMIC, Power Amplifier

Description

The CMPA901A035F is a gallium nitride (GaN) high electron mobility transistor (HEMT) based monolithic microwave integrated circuit (MMIC) on a silicon carbide (SiC) substrate. The semiconductor offers 35 Watts of power from 9 to 11 GHz of instantaneous bandwidth. The GaN HEMT MMIC is housed in a thermally-enhanced, 10-lead 25 mm x 9.9 mm metal/ceramic flanged package. It offers high gain and superior efficiency in a small footprint package at 50 ohms.

Package Types: 440213 PN's: CMPA901A035F

Features

- 35 W typical P_{SAT}
- >33% typical power added efficiency
- 22.5 dB large signal gain
- High temperature operation

Note:

Features are typical performance across frequency under 25 °C operation. Please reference performance charts for additional details.

Typical Performance Over 9.0 - 11.0 GHz ($T_c = 25 \text{ °C}$)

Parameter	9.0 GHz	9.5 GHz	10.0 GHz	10.5 GHz	11.0 GHz	Units
Small Signal Gain ^{1, 2}	34.8	32.4	32.7	33.2	32.6	dB
Output Power ^{1, 3}	45.9	45.8	45.6	45.6	45.4	dBm
Power Gain ^{1, 3}	22.9	22.8	22.6	22.6	22.4	dB
Power Added Efficiency ^{1, 3}	37	34	33	33	34	%

Applications

Military radar

Marine radar

Weather radar

Medical applications

Notes:

1

 $^{1}V_{DD} = 28 \text{ V}, \text{ I}_{DQ} = 1500 \text{ mA.}$ 2 Measured at P_{IN} = -20 dBm. 3 Measured at P_{IN} = 23 dBm and 300 µs; duty cycle = 20%.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

For further information and support please visit: https://www.macom.com/support

Absolute Maximum Ratings (Not Simultaneous) at 25 °C

Parameter	Symbol	Rating	Units	Conditions
Drain-Source Voltage	V _{DSS}	84	V _{DC}	25 °C
Gate-Source Voltage	V _{GS}	-10, +2	V _{DC}	25 °C
Storage Temperature	T _{stg}	-40, +150	°C	
Maximum Forward Gate Current	ا _G	19	mA	25 °C
Maximum Drain Current	I _{DMAX}	5	A	
Soldering Temperature	T _s	260	°C	
Junction Temperature	T,	225	°C	MTTF > 1e6 Hours

Electrical Characteristics (Frequency = 9.0 GHz to 11.0 GHz Unless Otherwise Stated; $T_c = 25$ °C)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
DC Characteristics	•					
Gate Threshold Voltage	V _{GS(th)}	-3.8	-2.8	-2.3	V	$V_{\rm DS} = 10 \text{ V}, I_{\rm D} = 19.8 \text{ mA}$
Gate Quiescent Voltage	V _{GS(Q)}	-	-2.7	-	V _{DC}	$V_{_{DD}}$ = 28 V, I $_{_{DQ}}$ = 1500 mA
Saturated Drain Current ¹	I _{DS}	14.3	19.8	-	А	$V_{\rm DS} = 6.0 \text{ V}, V_{\rm GS} = 2.0 \text{ V}$
Drain-Source Breakdown Voltage	V _{BD}	84	-	-	V	$V_{gs} = -8 V, I_{p} = 19.8 mA$
RF Characteristics ²						
Small Signal Gain	S21	-	34	-	dB	P _{IN} = -23 dBm, Freq = 9.0 - 10.0 GHz
Output Power	P _{OUT1}	_	45.7	_	dBm	$V_{DD} = 28 \text{ V}, \text{ I}_{DQ} = 1500 \text{ mA}, \text{ P}_{IN} = 23 \text{ dBm},$ Freq = 9.0 GHz
Output Power	P _{OUT2}	-	44.7	-	dBm	$V_{_{DD}} = 28 \text{ V}, \text{ I}_{_{DQ}} = 1500 \text{ mA}, \text{ P}_{_{IN}} = 23 \text{ dBm},$ Freq = 10.0 GHz
Power Added Efficiency	PAE ₁	-	40	-	%	$V_{DD} = 28 \text{ V}, \text{ I}_{DQ} = 1500 \text{ mA}, \text{ P}_{IN} = 23 \text{ dBm},$ Freq = 9.0 GHz
Power Added Efficiency	PAE ₂	-	37	-	%	$V_{DD} = 28 \text{ V}, \text{ I}_{DQ} = 1500 \text{ mA}, \text{ P}_{IN} = 23 \text{ dBm},$ Freq = 10.0 GHz
Input Return Loss	S11	-	-6.4	-	dB	P _{IN} = -23 dBm, 9.0 - 10.0 GHz
Output Return Loss	S22	_	-6.8	-	dB	P _{IN} = -23 dBm, 9.0 - 10.0 GHz
Output Mismatch Stress	VSWR	-	5:1	-	Ψ	No Damage at All Phase Angles

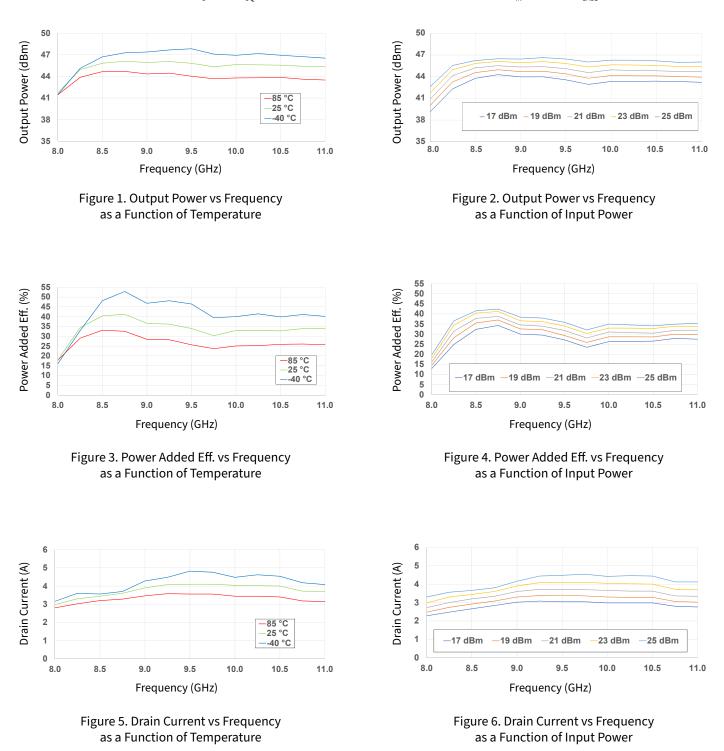
Notes:

¹ Scaled from PCM data.

 2 Unless otherwise noted: Pulse width = 300 $\mu s,$ duty cycle = 20%.

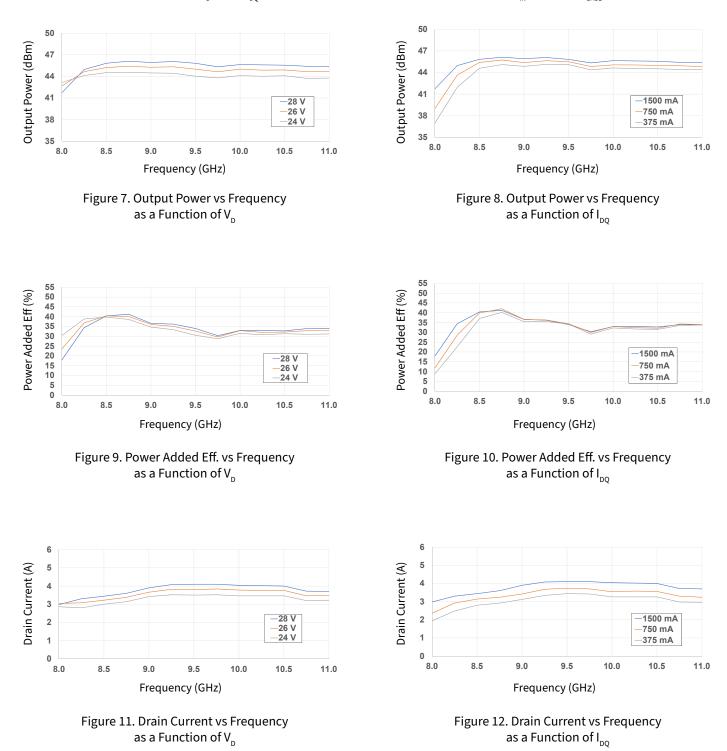
Thermal Characteristics

Parameter	Symbol	Rating	Units	Conditions	
Operating Junction Temperature	T	159	°C	Pulse Width = 300 μs, Duty Cycle = 20% P _{DISS} = 80 W, T _{CASE} = 85 °C	
Thermal Resistance, Junction to Case	R _{θJC}	0.93	°C/W		
Operating Junction Temperature	T	217	°C	- P _{DISS} = 80 W, T _{CASE} = 85 °C	
Thermal Resistance, Junction to Case	R _{θJC}	1.66	°C/W		


2

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

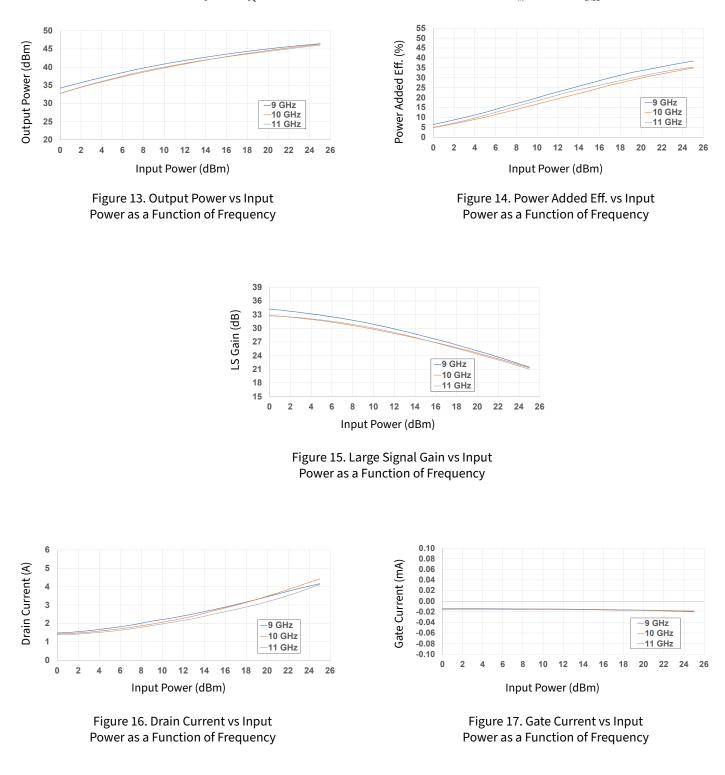
For further information and support please visit: <u>https://www.macom.com/support</u>


Test conditions unless otherwise noted: $V_D = 28 V$, $I_{DO} = 1500 mA$, pulse width = 300 μ s, duty cycle = 20%, $P_{IN} = 23 dBm$, $T_{BASE} = +25 °C$

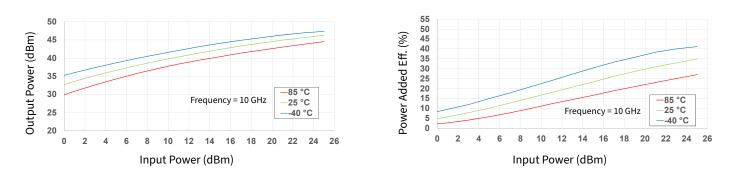
³

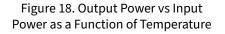
Test conditions unless otherwise noted: $V_D = 28 V$, $I_{DO} = 1500 mA$, pulse width = 300 μ s, duty cycle = 20%, $P_{IN} = 23 dBm$, $T_{BASE} = +25 °C$

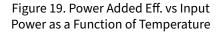
MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information. For further information and support please visit:

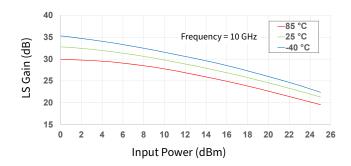

5

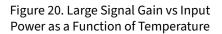
https://www.macom.com/support

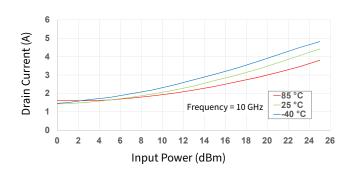

Typical Performance of the CMPA901A035F

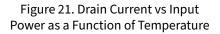

Test conditions unless otherwise noted: $V_{D} = 28 \text{ V}$, $I_{DO} = 1500 \text{ mA}$, pulse width = 300 μ s, duty cycle = 20%, $P_{IN} = 23 \text{ dBm}$, $T_{BASE} = +25 \text{ °C}$






Test conditions unless otherwise noted: $V_{D} = 28 V$, $I_{DO} = 1500 mA$, pulse width = 300 μ s, duty cycle = 20%, $P_{IN} = 23 dBm$, $T_{BASE} = +25 °C$





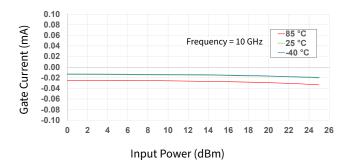
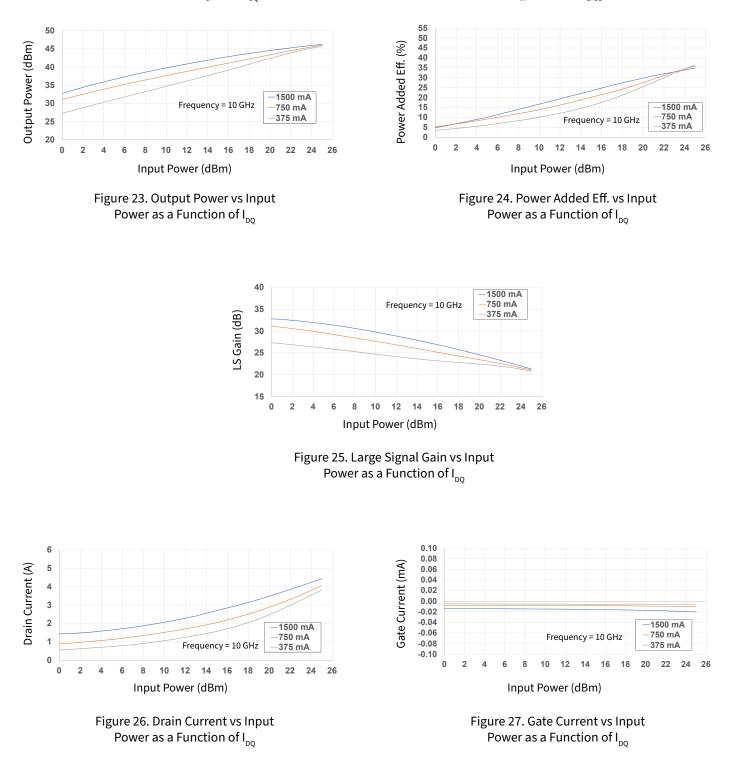


Figure 22. Gate Current vs Input Power as a Function of Temperature

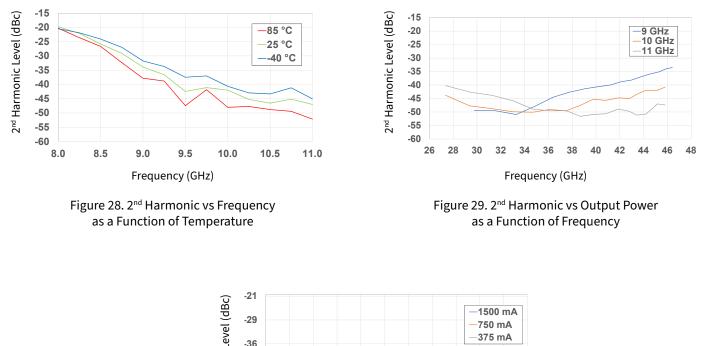

6

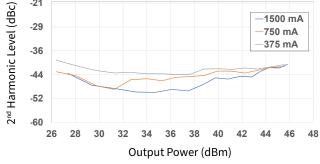
https://www.macom.com/support

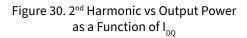
MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. For further information and support please visit: Rev. 0.5, SEPTEMBER 2023

Test conditions unless otherwise noted: $V_{D} = 28 \text{ V}$, $I_{DO} = 1500 \text{ mA}$, pulse width = 300 μ s, duty cycle = 20%, $P_{IN} = 23 \text{ dBm}$, $T_{BASE} = +25 \text{ °C}$

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information. For further information and support please visit:

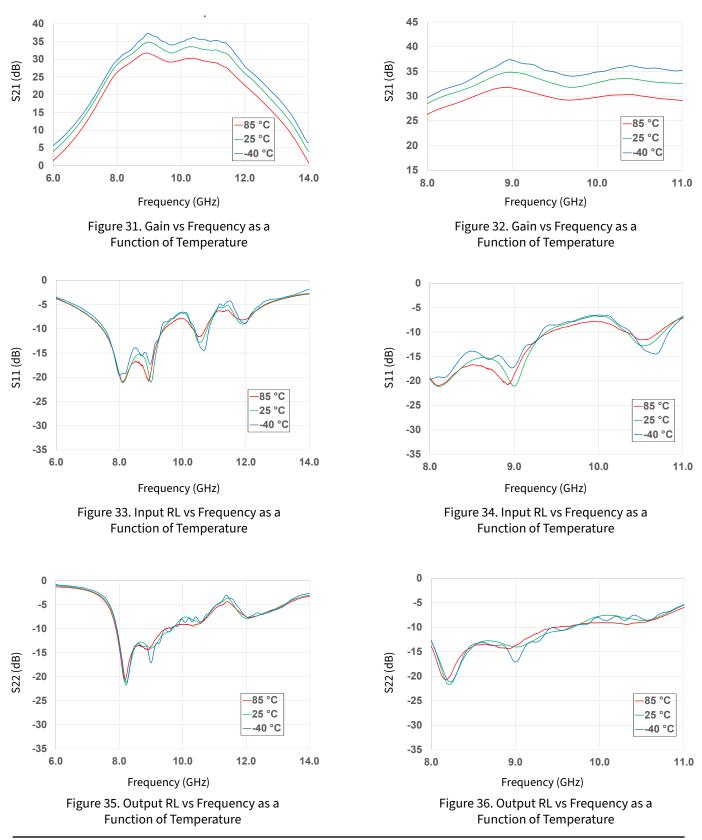

7


8



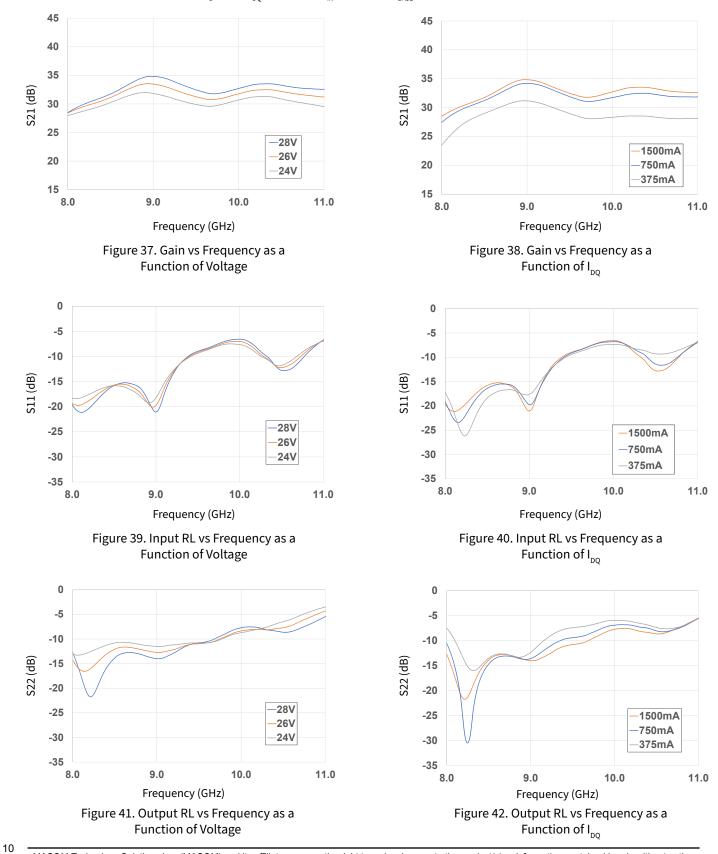
Typical Performance of the CMPA901A035F

Test conditions unless otherwise noted: $V_D = 28 V$, $I_{DO} = 1500 mA$, pulse width = 300 μ s, duty cycle = 20%, $P_{IN} = 23 dBm$, $T_{BASE} = +25 °C$



MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. For further information and support please visit: <u>https://www.macom.com/support</u> Rev. 0.5, SEPTEMBER 2023

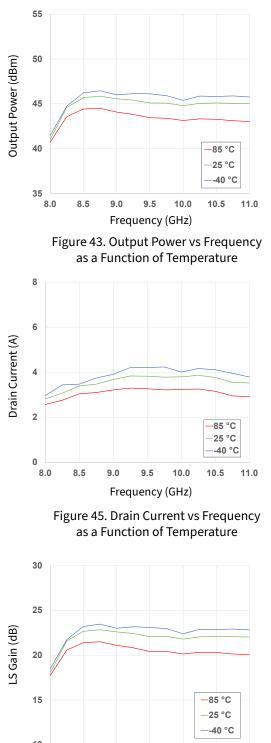
Test conditions unless otherwise noted: $V_D = 28 \text{ V}$, $I_{DO} = 1500 \text{ mA}$, $P_{IN} = -20 \text{ dBm}$, $T_{BASE} = +25 \text{ °C}$

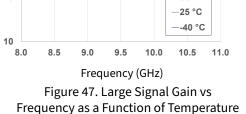

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information. For further information and support please visit:

https://www.macom.com/support

9

Test conditions unless otherwise noted: $V_D = 28 \text{ V}$, $I_{DO} = 1500 \text{ mA}$, $P_{IN} = -20 \text{ dBm}$, $T_{BASE} = +25 \text{ °C}$




MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information. For further information and support please visit:

https://www.macom.com/support

Test conditions unless otherwise noted: $V_D = 28 V$, $I_{DO} = 1500 mA$, CW, $P_{IN} = 23 dBm$, $T_{BASE} = +25 °C$

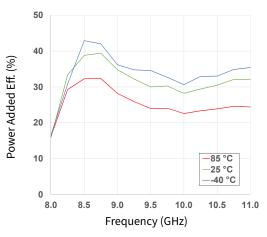


Figure 44. Power Added Eff. vs Frequency as a Function of Temperature

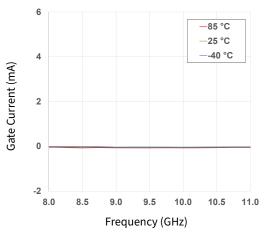
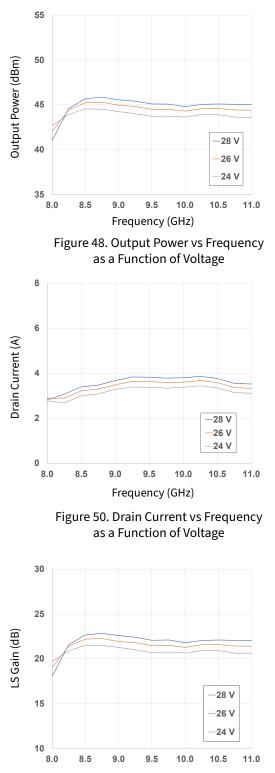



Figure 46. Gate Current vs Frequency as a Function of Temperature

Test conditions unless otherwise noted: $V_D = 28 V$, $I_{DO} = 1500 mA$, CW, $P_{IN} = 23 dBm$, $T_{BASE} = +25 °C$

Frequency (GHz) Figure 52. Large Signal Gain vs Frequency as a Function of Voltage

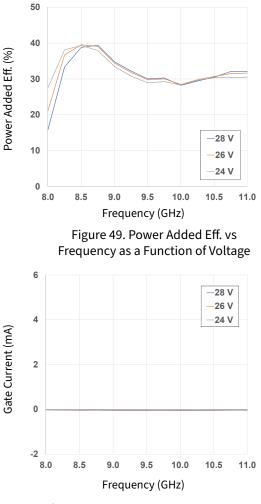
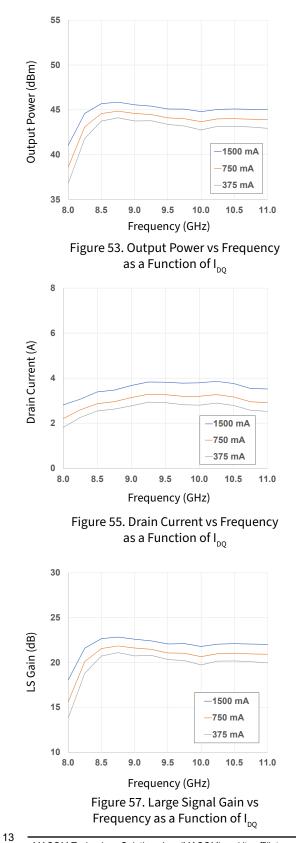



Figure 51. Gate Current vs Frequency as a Function of Voltage

Test conditions unless otherwise noted: V_D = 28 V, I_{DQ} = 1500 mA, CW, P_{IN} = 23 dBm, T_{BASE} = +25 °C

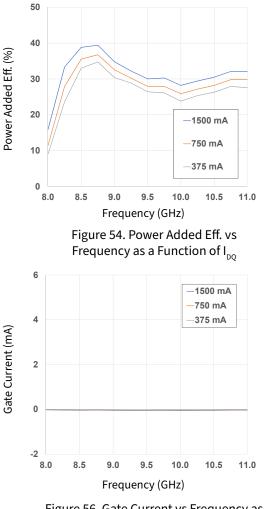
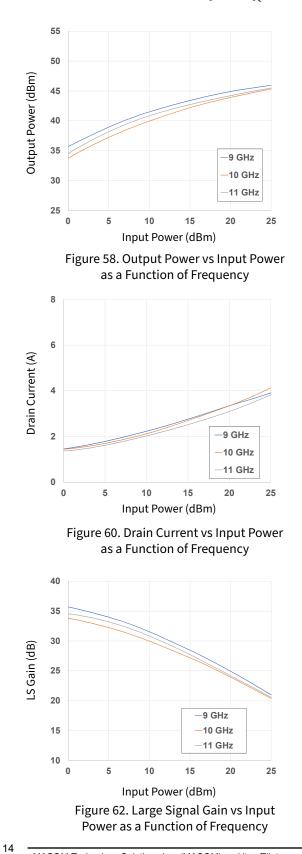
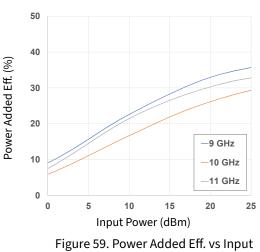




Figure 56. Gate Current vs Frequency as a Function of I_{DO}

Test conditions unless otherwise noted: $V_D = 28 \text{ V}$, $I_{DO} = 1500 \text{ mA}$, CW, $P_{IN} = 23 \text{ dBm}$, Frequency = 10 GHz, $T_{BASE} = +25 \text{ °C}$

Power as a Function of Frequency

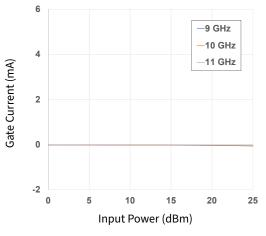


Figure 61. Gate Current vs Input Power as a Function of Frequency

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information. For further information and support please visit: Rev. 0.5, SEPTEMBER 2023

Test conditions unless otherwise noted: $V_D = 28 \text{ V}$, $I_{DO} = 1500 \text{ mA}$, CW, $P_{IN} = 23 \text{ dBm}$, Frequency = 10 GHz, $T_{BASE} = +25 \text{ °C}$

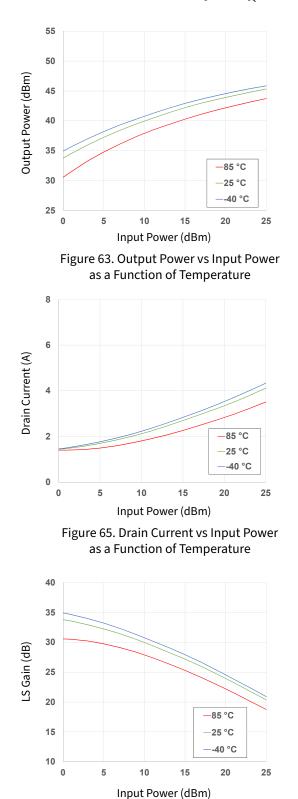


Figure 67. Large Signal Gain vs Input Power as a Function of Temperature

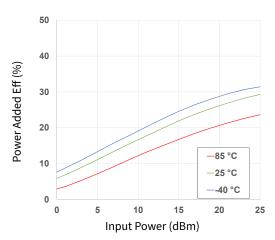


Figure 64. Power Added Eff. vs Input Power as a Function of Temperature

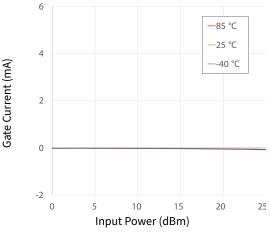
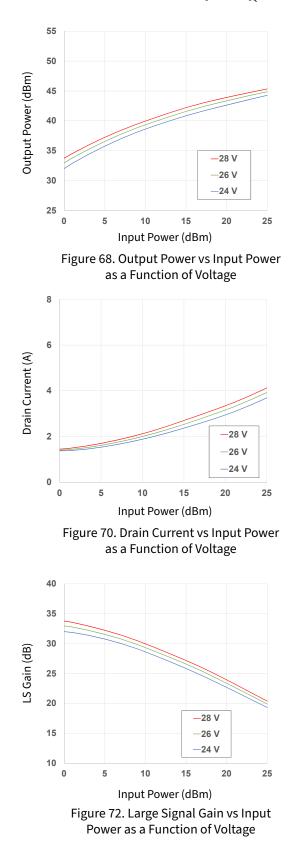



Figure 66. Gate Current vs Input Power as a Function of Temperature

Test conditions unless otherwise noted: $V_D = 28 \text{ V}$, $I_{DO} = 1500 \text{ mA}$, CW, $P_{IN} = 23 \text{ dBm}$, Frequency = 10 GHz, $T_{BASE} = +25 \text{ °C}$

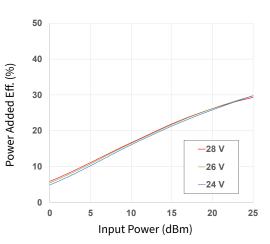
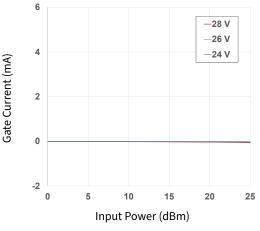
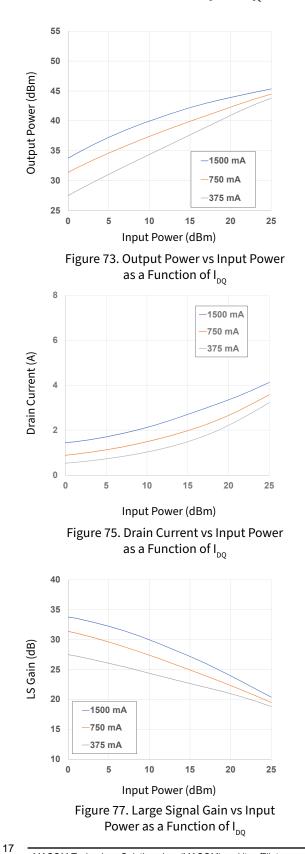
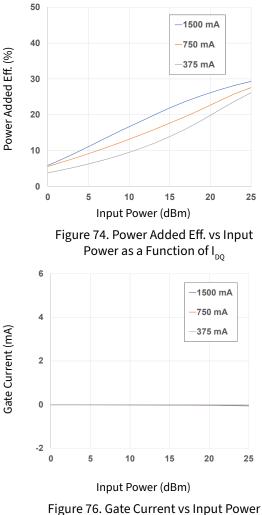


Figure 69. Power Added Eff. vs Input Power as a Function of Voltage

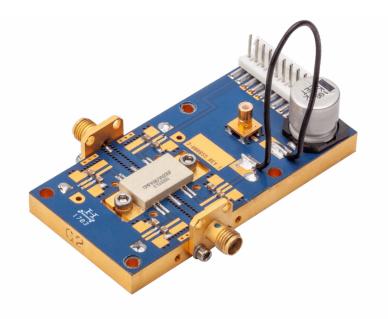

Figure 71. Gate Current vs Input Power as a Function of Voltage

16 MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information. For further information and support please visit:



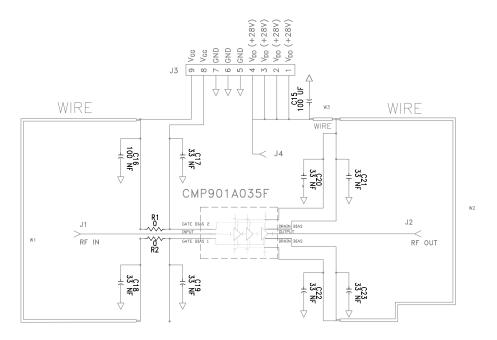
Test conditions unless otherwise noted: $V_D = 28 V$, $I_{DO} = 1500 mA$, CW, $P_{IN} = 23 dBm$, $T_{BASE} = +25 °C$

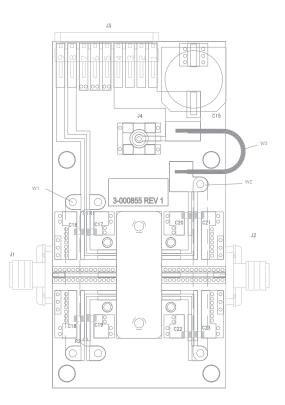
as a Function of I_{DO}



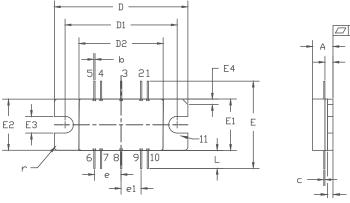
CMPA901A035F-AMP Evaluation Board Bill of Materials

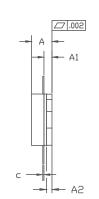
Designator	Description	Qty
C15	CAP ELECT 100 UF 80 V AFK SMD	1
C16 - C23	CAP, 33000 PF, 0805, 100 V, X7R	8
R1, R2	RES 0.0 OHM 1/16 W 0402 SMD	2
J1, J2	CONN, SMA, PANEL MOUNT JACK, FLANGE, 4-HOLE, BLUNT POST, 20MIL	2
J4	CONN, SMB, STRAIGHT JACK RECEPTACLE, SMT, 50 OHM, Au PLATED	1
J3	HEADER RT>PLZ .1CEN LK 9POS	1
W1	WIRE, BLACK, 22 AWG ~ 1.50"	1
W2	WIRE, BLACK, 22 AWG ~ 1.75"	1
W3	WIRE, BLACK, 22 AWG ~ 3.0"	1
Q1	CMPA901A035F	1


CMPA901A035F-AMP Evaluation Board Circuit


18 MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. For further information and support please visit: <u>https://www.macom.com/support</u> Rev. 0.5, SEPTEMBER 2023

CMPA901A035F-AMP Evaluation Board Schematic



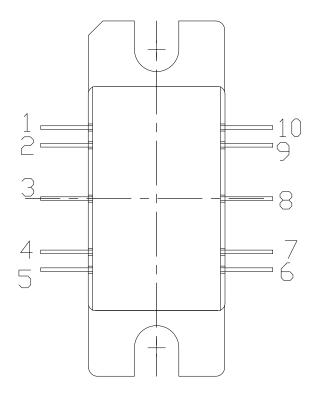

CMPA901A035F-AMP Evaluation Board Outline

Product Dimensions CMPA901A035F

PIN	1: GATE BIAS	6: DRAIN BIAS
	2: GATE BIAS	7: DRAIN BIAS
	3: RF IN	8: RF OUT
	4: GATE BIAS	9 DRAIN BIAS
	5: GATE BIAS	10: DRAIN BIAS
		11: SOURCE

NΠ	TES:	

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M - 1994.

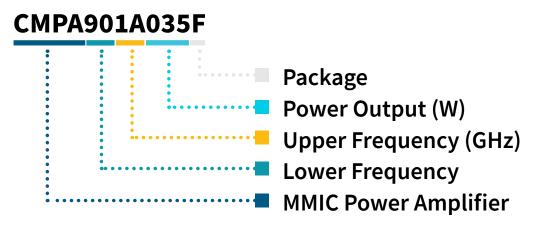

2. CONTROLLING DIMENSION: INCH.

3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020" BEYOND EDGE OF LID.

4. LID MAY BE MISALIGNED TO THE BODY OF PACKAGE BY A MAXIMUM OF 0.008" IN ANY DIRECTION.

	INC	HES	MILLIMETERS		NOTES
DIM	MIN	МАХ	MIN	MAX	
Α	0.148	0.168	3.76	4.27	
A1	0.055	0.065	1.40	1.65	
A2	0.035	0.045	0.89	1.14	
b	0.01	TYP	0.254	TYP	10x
с	0.007	0.009	0.18	0.23	
D	0.995	1.005	25.27	25.53	
D1	0.835	0.845	21.21	21.46	
D2	0.623	0.637	15.82	16.18	
Е	0.653	TYP	16.59 TYP		
E1	0.380	0.390	9.65	9.91	
E2	0.380	0.390	9.65	9.91	
E3	0.120	0.130	3.05	3.30	
E4	0.035	0.045	0.89	1.14	45° CHAMFER
е	0.20) TYP	5.08	TYP	4x
e1	0.15) TYP	3.81	TYP	4x
L	0.115	0.155	2.92	3.94	10x
r	0.02	5 TYP	.635	TYP	Зx

Pin Number	Qty			
1	Gate Bias for Stage 1, 2 & 3			
2	Gate Bias for Stage 1, 2 & 3			
3	RF IN			
4	Gate Bias for Stage 1, 2 & 3			
5	Gate Bias for Stage 1, 2 & 3			
6	Drain Bias			
7	Drain Bias			
8	RF OUT			
9	Drain Bias			
10	Drain Bias			


20

https://www.macom.com/support

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. Rev. 0.5, SEPTEMBER 2023 For further information and support please visit:

Part Number System

Table 1.

Parameter	Value	Units
Lower Frequency	9.0	GHz
Upper Frequency ¹	10.0	GHz
Power Output	35	W
Package	Flanged	-

Note:

¹Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.

Table 2.

Character Code	Code Value
A	0
В	1
C	2
D	3
E	4
F	5
G	6
Н	7
J	8
К	9
Examples:	1 A = 10.0 GHz 2 H = 27.0 GHz

21

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CMPA901A035F	GaN HEMT	Each	CHIPSOLIDISE CHIPSOLIDISE
CMPA901A035F-AMP	Test Board with GaN MMIC Installed	Each	

Notes & Disclaimer

https://www.macom.com/support

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

²³ MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. For further information and support please visit: Rev. 0.5, SEPTEMBER 2023

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

MACOM:

CMPA901A035F-AMP CMPA901A035F