

CMPA5259050S

50 W, 5.0 - 5.9 GHz, GaN MMIC, Power Amplifier

Description

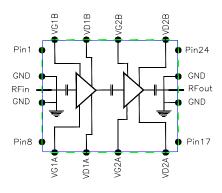
The CMPA5259050S is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) based monolithic microwave integrated circuit (MMIC). This MMIC contains a two-stage reactively matched amplifier design approach enabling high power and power added efficiency to be achieved in a 5 mm x 5 mm surface mount (QFN package).

Package Type: 5 x 5 QFN PN: CMPA5259050S

Typical Performance Over 5.0 - 5.9 GHz ($T_c = 25^{\circ}$ C)

Parameter	5.2 GHz	5.5 GHz	5.9 GHz	Units
Small Signal Gain ^{1,2}	27.0	26.0	27.1	dB
Output Power ^{1,3}	48.2	48.1	48.6	dBm
Power Gain ^{1,3}	23.2	23.1	23.6	dB
Power Added Efficiency ^{1,3}	56	51	49	%

Note:


Features

- >50% Typical Power Added Efficiency
- 27 dB Small Signal Gain
- 65 W Typical P_{SAT}
- Operation up to 28 V
- High Breakdown Voltage
- **High Temperature Operation**

Note: Features are typical performance across frequency under 25°C operation. Please reference performance charts for additional details.

Applications

Civil and Military Pulsed **Radar Amplifiers**

 $^{^{1}}$ V_{DD} = 28 V, I_{DQ} = 500 mA

 $^{^{2}}$ Measured at P_{IN} = -20 dBm

 $^{^3}$ Measured at P_{IN} = 25 dBm and 150 $\mu s;$ Duty Cycle = 20%

Absolute Maximum Ratings (not simultaneous) at 25°C

Parameter	Symbol	Rating	Units	Conditions
Drain-source Voltage	$V_{ extsf{DSS}}$	84	V	ar°c
Gate-source Voltage	V _{GS}	-10, +2	V_{DC}	25°C
Storage Temperature	T _{STG}	-55, +150	°C	
Maximum Forward Gate Current	I _{GMAX}	18.96	mA	25°C
Maximum Drain Current	I _{DMAX}	4.5	Α	
Soldering Temperature	Ts	260	°C	

Electrical Characteristics (Frequency = 5.0 GHz to 5.9 GHz unless otherwise stated; $T_c = 25^{\circ}\text{C}$)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
DC Characteristics						
Gate Threshold Voltage	$V_{GS(th)}$	-2.6	-2.0	-1.6	V	$V_{DS} = 10 \text{ V}, I_{D} = 18.96 \text{ mA}$
Gate Quiescent Voltage	$V_{GS(Q)}$	_	-1.8	_	V _{DC}	$V_{DD} = 28 \text{ V}, I_{DQ} = 500 \text{ mA}$
Saturated Drain Current ¹	I _{DS}	18.96	22.75	_	А	$V_{DS} = 6.0 \text{ V}, V_{GS} = 2.0 \text{ V}$
Drain-Source Breakdown Voltage	V _{BD}	84	_	_	V	V _{GS} = -8 V, I _D = 18.96 mA
RF Characteristics ^{2,3}						
Small Signal Gain at 5.2 GHz	S21 ₁	_	27	_		
Small Signal Gain at 5.55 GHz	S21 ₂	_	26.6	_	dB	$V_{DD} = 28 \text{ V}, I_{DQ} = 500 \text{ mA}, P_{IN} = 5 \text{ dBm}$
Small Signal Gain at 5.9 GHz	S21 ₃	-	27.2	_]	
Output Power at 5.2 GHz	P _{OUT1}	_	47.0	_		
Output Power at 5.55 GHz	P _{OUT2}	_	47.8	_	dBm	
Output Power at 5.9 GHz	P _{OUT3}	-	48.1	_]	V = 20 V I = 500 m/ D = 25 dDm
Power Added Efficiency at 5.2 GHz	PAE ₁	-	54	_	%	$V_{DD} = 28 \text{ V}, I_{DQ} = 500 \text{ mA}, P_{IN} = 25 \text{ dBm}$
Power Added Efficiency at 5.55 GHz	PAE ₂	_	53	_		
Power Added Efficiency at 5.9 GHz	PAE ₃	_	50	_		
Output Mismatch Stress	VSWR	_	_	3:1	Ψ	No damage at all phase angles

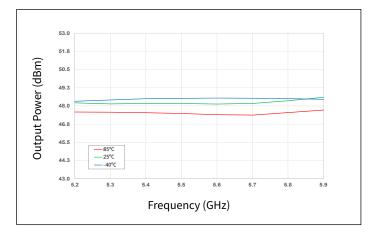
Notes:

Thermal Characteristics

Parameter	Symbol	Rating	Units	Conditions
Operating Junction Temperature	TJ	225	°C	
Thermal Resistance, Junction to Case (packaged) ¹	$R_{\theta JC}$	1.13	°C/W	Pulse Width = 150µs, Duty Cycle =20%

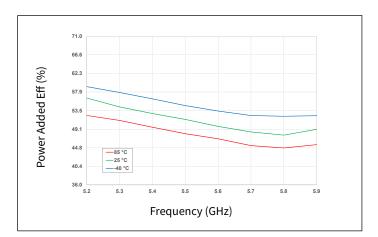
Notes:

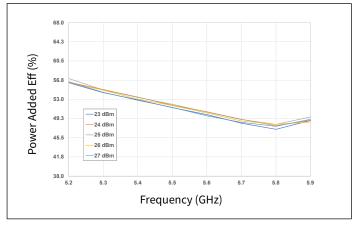
¹ Scaled from PCM data

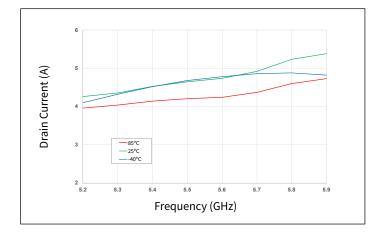

² Measured in CMPA5259050S high volume test fixture at 5.2, 5.55 and 5.9 GHz and may not show the full capability of the device due to source inductance and thermal performance.

³ Unless otherwise noted: Pulse Width = 25μs, Duty Cycle = 1%

 $^{^{\}rm 1}$ Measured for the CMPA5259050S at $P_{\text{\tiny DISS}}$ = 64 W


Test conditions unless otherwise noted: V_D = 28 V, I_{DQ} = 500 mA, Pulse Width = 150µs, Duty Cycle = 20%, P_{IN} = 25 dBm, T_{BASE} = +25°C


Figure 1. Output Power vs Frequency as a Function of Temperature


Figure 2. Output Power vs Frequency as a Function of Input Power

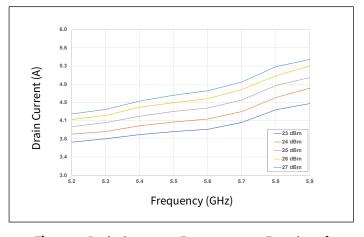

Figure 3. Power Added Eff. vs Frequency as a Function of Temperature

Figure 4. Power Added Eff. vs Frequency as a Function of Input Power

Figure 5. Drain Current vs Frequency as a Function of Temperature

Figure 6. Drain Current vs Frequency as a Function of Input Power

Test conditions unless otherwise noted: V_D = 28 V, I_{DQ} = 500 mA, Pulse Width = 150µs, Duty Cycle = 20%, P_{IN} = 25 dBm, T_{BASE} = +25°C

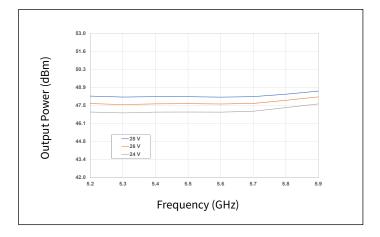


Figure 7. Output Power vs Frequency as a Function of V_D

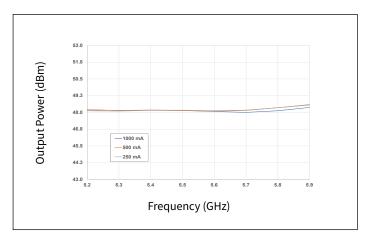


Figure 8. Output Power vs Frequency as a Function of IDQ

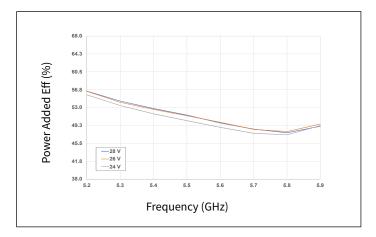


Figure 9. Power Added Eff. vs Frequency as a Function of V_D

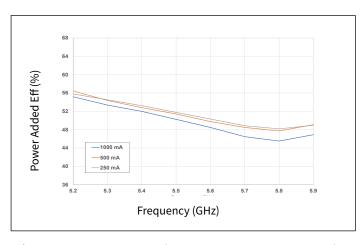


Figure 10. Power Added Eff. vs Frequency as a Function of I_{DO}

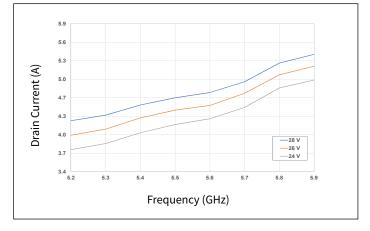


Figure 11. Drain Current vs Frequency as a Function of V_D

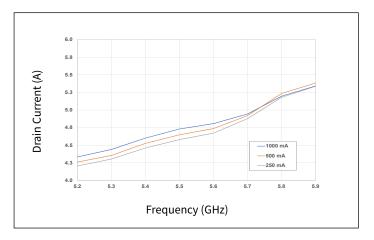


Figure 12. Drain Current vs Frequency as a Function of IDO

4 MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Visit www.macom.com for additional data sheets and product information.

For further information and support please visit:

Rev. 1.0, 2022-10-7

-5.2 GHz -5.55 GHz

-5.9 GHz

Typical Performance of the CMPA5259050S

Test conditions unless otherwise noted: V_D = 28 V, I_{DQ} = 500 mA, Pulse Width = 150µs, Duty Cycle = 20%, P_{IN} = 25 dBm, T_{BASE} = +25°C

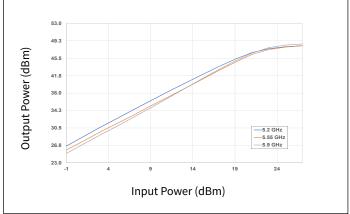
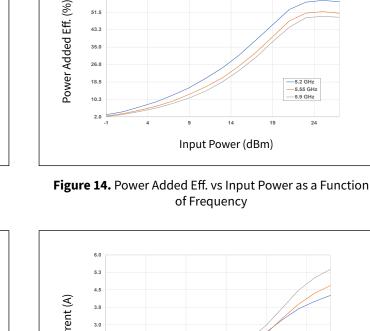



Figure 13. Output Power vs Input Power as a Function of Frequency

35.0

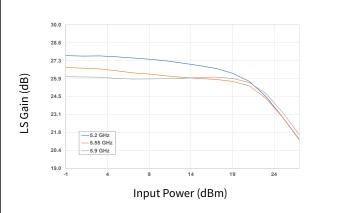
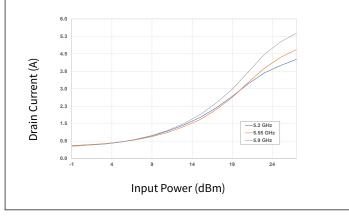



Figure 15. Large Signal Gain vs Input Power as a Function of Frequency

Input Power (dBm)

of Frequency

Figure 16. Drain Current vs Input Power as a Function of Frequency

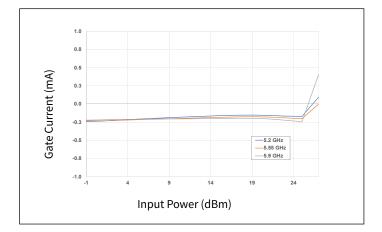


Figure 17. Gate Current vs Input Power as a Function of Frequency

Test conditions unless otherwise noted: V_D = 28 V, I_{DQ} = 500 mA, Pulse Width = 150µs, Duty Cycle = 20%, P_{IN} = 25 dBm, T_{BASE} = +25°C

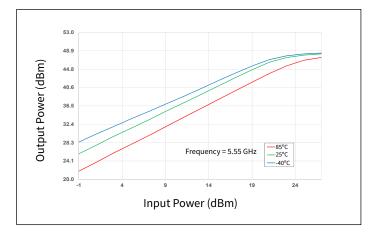


Figure 18. Output Power vs Input Power as a Function of Temperature

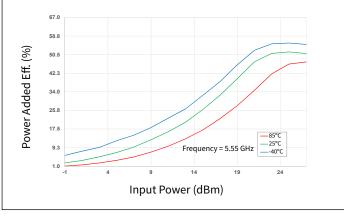


Figure 19. Power Added Eff. vs Input Power as a Function of Temperature

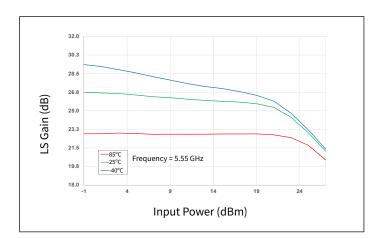


Figure 20. Large Signal Gain vs Input Power as a Function of Temperature

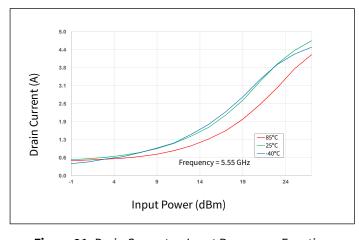


Figure 21. Drain Current vs Input Power as a Function of Temperature

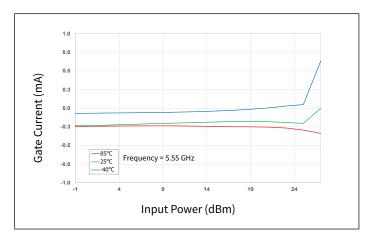


Figure 22. Gate Current vs Input Power as a Function of Temperature

Test conditions unless otherwise noted: V_D = 28 V, I_{DQ} = 500 mA, Pulse Width = 150µs, Duty Cycle = 20%, P_{IN} = 25 dBm, T_{BASE} = +25°C

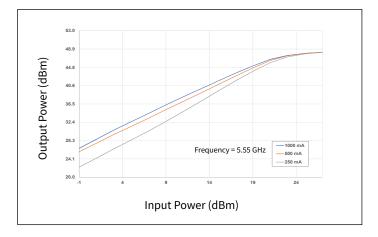


Figure 23. Output Power vs Input Power as a Function of I_{DQ}

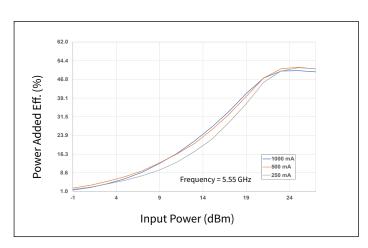


Figure 24. Power Added Eff. vs Input Power as a Function of IDQ

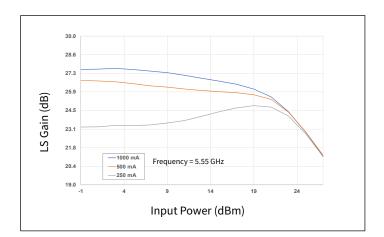


Figure 25. Large Signal Gain vs Input Power as a Function of IDO

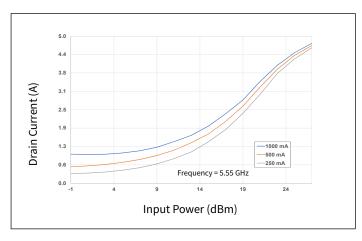


Figure 26. Drain Current vs Input Power as a Function of IDO

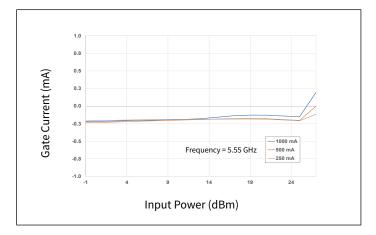
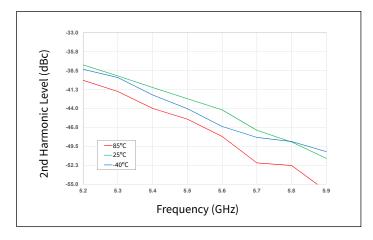
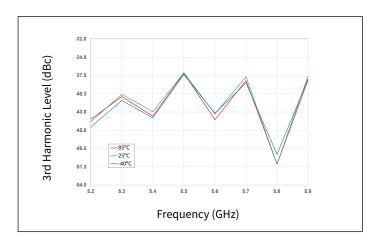



Figure 27. Gate Current vs Input Power as a Function of IDQ


7

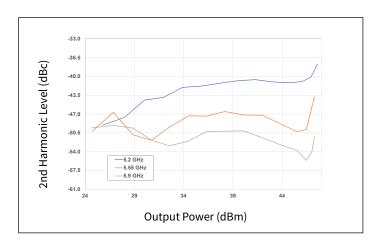

Test conditions unless otherwise noted: V_D = 28 V, I_{DQ} = 500 mA, Pulse Width = 150µs, Duty Cycle = 20%, P_{IN} = 25 dBm, T_{BASE} = +25°C

Figure 28. 2nd Harmonic vs Frequency as a Function of Temperature

Figure 29. 3rd Harmonic vs Frequency as a Function of Temperature

Figure 30. 2nd Harmonic vs Output Power as a Function of Frequency

Figure 31. 3rd Harmonic vs Output Power as a Function of Frequency

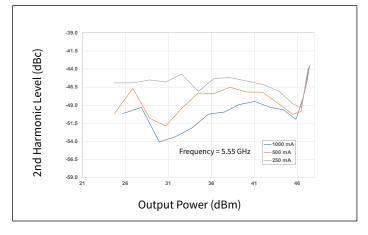


Figure 32. 2nd Harmonic vs Output Power as a Function of I_{DO}

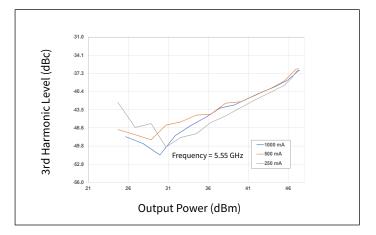


Figure 33. 3rd Harmonic vs Output Power as a Function of IDO

Test conditions unless otherwise noted: $V_D = 28 \text{ V}$, $I_{DQ} = 500 \text{ mA}$, $P_{IN} = -20 \text{ dBm}$, $T_{BASE} = +25 ^{\circ}\text{C}$

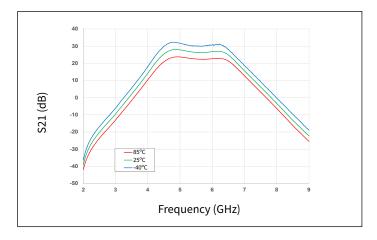


Figure 34. Gain vs Frequency as a Function of Temperature

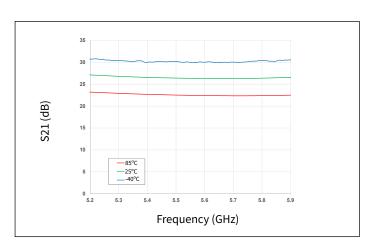


Figure 35. Gain vs Frequency as a Function of Temperature

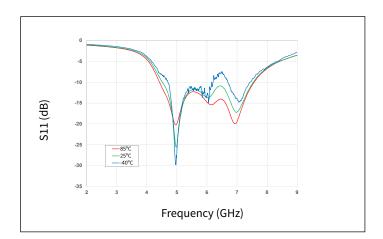


Figure 36. Input RL vs Frequency as a Function of Temperature

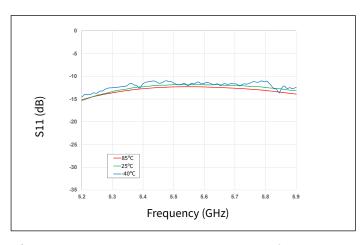


Figure 37. Input RL vs Frequency as a Function of Temperature

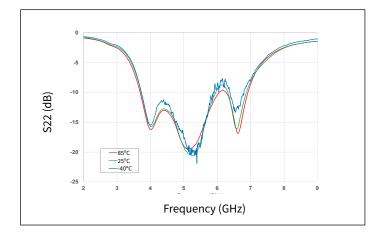


Figure 38. Output RL vs Frequency as a Function of Temperature

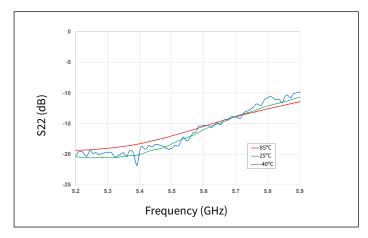


Figure 39. Output RL vs Frequency as a Function of Temperature

Test conditions unless otherwise noted: $V_D = 28 \text{ V}$, $I_{DQ} = 500 \text{ mA}$, $P_{IN} = -20 \text{ dBm}$, $T_{BASE} = +25 ^{\circ}\text{C}$

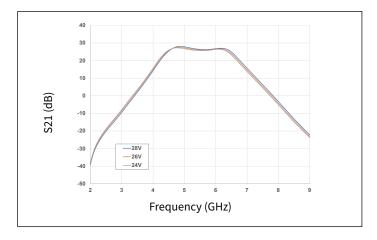


Figure 40. Gain vs Frequency as a Function of Voltage

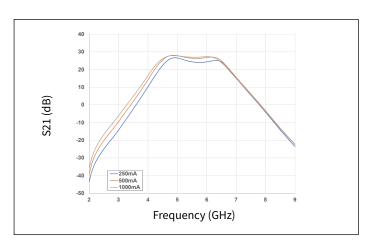


Figure 41. Gain vs Frequency as a Function of IDQ

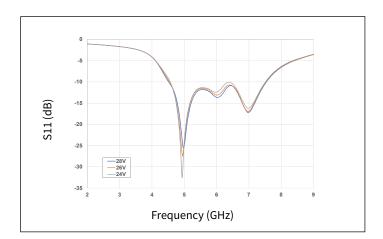


Figure 42. Input RL vs Frequency as a Function Voltage

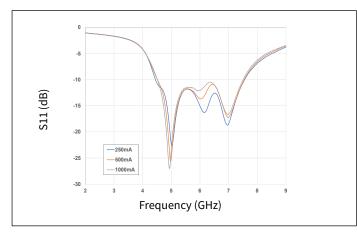


Figure 43. Input RL vs Frequency as a Function of IDO

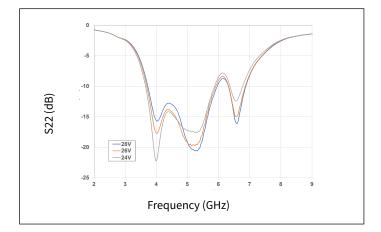
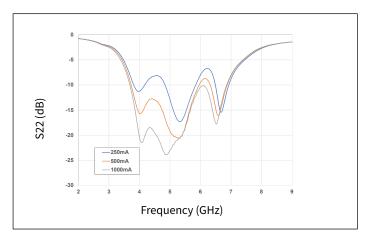
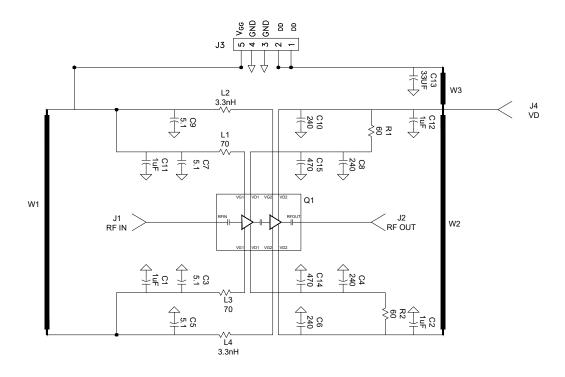
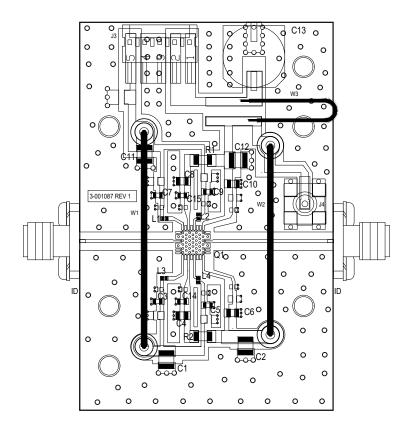


Figure 44. Output RL vs Frequency as a Function of Voltage


Figure 45. Output RL vs Frequency as a Function of IDQ

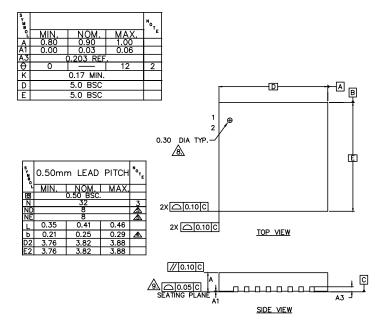
CMPA5259050S-AMP1 Demonstration Amplifier Schematic

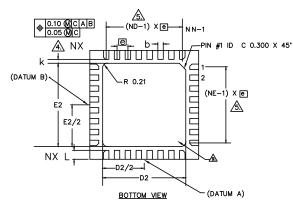
CMPA5259050S-AMP1 Demonstration Amplifier Circuit Outline

CMPA5259050S-AMP1 Demonstration Amplifier Circuit Bill of Materials

Designator	Description	Qty
C13	CAP, 33μF, 20%, G CASE	1
C1, C2, C11, C12	CAP, 1.0μF, 100V, 10%, X7R, 1210	4
C3, C5, C7, C9	CAP, 5.1pF, +/-0.05pF, 0603, ATC, 600S	4
C4, C6, C8, C10	CAP, 240pF +/-5%, 0805, ATC, 600F	4
C14, C15	470pF, NPO/COG 0603	2
L2, L4	INDUCTOR, SMT, 0402, 3.3nH, 5%	2
L1, L3	Ferrite bead, 70 ohm, 780mA, 0402	2
R1, R2	Ferrite bead, 60 ohm, 3.7A, 18806	2
J1, J2	CONN, SMA, PANEL MOUNT JACK, FLANGE, 4-HOLE, BLUNT POST, 20MIL	2
J3	HEADER RT>PLZ .1CEN LK 5POS	1
J4	CONN, SMB, STRAIGHT JACK RECEPTACLE, SMT, 50 OHM, Au PLATED	1
W1	WIRE, BLACK, 20 AWG ~ 1.5"	1
W2	WIRE, BLACK, 20 AWG ~ 1.3"	3
W3	WIRE, BLACK, 20 AWG ~ 1.5"	3
	PCB, TEST FIXTURE, RF35, 0.010", 5X5 2-STAGE, QFN	1
	HEATSINK, 6X6 QFN, 3-STAGE 2.600 X 1.700 X 0.250	1
	2-56 SOC HD SCREW 3/16 SS	4
	#2 SPLIT LOCKWASHER SS	4
Q1	CMPA5259050S	1

Electrostatic Discharge (ESD) Classifications

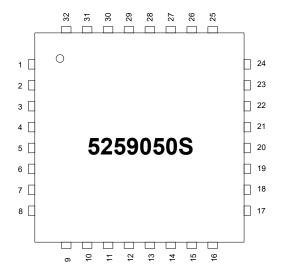

Parameter	Symbol	Class	Classification Level	Test Methodology
Human Body Model	НВМ	1B	ANSI/ESDA/JEDEC JS-001 Table 3	JEDEC JESD22 A114-D
Charge Device Model	CDM	С3	ANSI/ESDA/JEDEC JS-002 Table 3	JEDEC JESD22 C101-C


Moisture Sensitivity Level (MSL) Classification

Parameter	Symbol	Level	Test Methodology
Moisture Sensitivity Level	MSL	3 (168 hours)	IPC/JEDEC J-STD-20

Product Dimensions CMPA5259050S (Package 5 x 5 QFN)

NOTES:


- 1. DIMENSIONING AND TOLERANCING CONFORM TO ASME Y14.5M. 1994.
 2. ALL DIMENSIONS ARE IN MILLIMETERS, 0 IS IN DEGREES.
 3. N IS THE TOTAL NUMBER OF TERMINALS.

 DIMENSION 5 APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.15 AND
- QUINCHISTORY OF APPLIES TO METALLEED TERMINAL AND IS MEASURED BETHELD O.TO AND
 0.30mm FROM TERMINAL TIP.
 ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.
 MAX. PACKAGE WARPAGE IS 0.056 mm. IN ALL DIRECTIONS.

- A PIN #1 ID ON TOP WILL BE LASER MARKED.
- 9. BILATERAL COPLANARITY ZONE APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE
- TERMINALS.

 10. THIS DRAWING CONFORMS TO JEDEC REGISTERED OUTLINE MO-220

 11. ALL PLATED SURFACES ARE 100% TIN MATTE 0.010 mm +/- 0.005 mm.

PIN	DESC.	PIN	DESC.	PIN	DESC.
1	NC	15	NC	29	NC
2	NC	16	VD2A	30	VD1B
3	RFGND	17	NC	31	NC
4	RFIN	18	NC	32	VG1B
5	RFGND	19	NC		
6	NC	20	RFGND		
7	NC	21	RFOUT		
8	NC	22	RFGND		
9	VG1A	23	NC		
10	NC	24	NC		
11	VD1A	25	VD2B		
12	NC	26	NC		
13	VG2A	27	NC		
14	NC	28	VG2B		

Part Number System

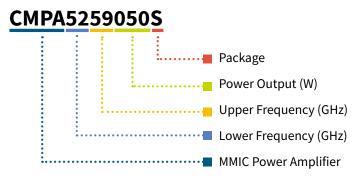


Table 1.

Parameter	Value	Units
Lower Frequency	5.0	GHz
Upper Frequency	5.9	GHZ
Power Output	50	W
Package	Surface Mount	-

Note:

Table 2.

Character Code	Code Value
А	0
В	1
С	2
D	3
E	4
F	5
G	6
Н	7
J	8
К	9
Examples	1A = 10.0 GHz 2H = 27.0 GHz

¹ Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CMPA5259050S	GaN HEMT	Each	
CMPA5259050S-AMP1	Test board with GaN MMIC installed	Each	

Notes & Disclaimer

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

MACOM:

CMPA5259050S CMPA5259050S-AMP1