

Date:- 04 Oct, 2019

Data Sheet Issue:- P2

Tentative data Insulated Gate Bi-Polar Transistor Type T1000EC33G

Absolute Maximum Ratings

	VOLTAGE RATINGS	MAXIMUM LIMITS	UNITS
Vces	Collector – emitter voltage	3300	V
VDC link	Permanent DC voltage for 100 FIT failure rate.	1800	V
Vges	Peak gate – emitter voltage	±20	V

	RATINGS	MAXIMUM LIMITS	UNITS
IC(DC)	DC collector current, IGBT	1000	А
ICRM	Repetitive peak collector current, tp=1ms, IGBT	2000	А
IF(DC)	Continuous DC forward current, Diode	1000	А
IFRM	Repetitive peak forward current, tp=1ms, Diode	2000	А
IFSM	Peak non-repetitive surge $t_p=10ms$, $V_{RM}=60\%V_{RRM}$, Diode (Note 4)	6000	А
I _{FSM2}	Peak non-repetitive surge t _p =10ms, V _{RM} ≤10V, Diode (Note 4)	6600	А
Рмах	Maximum power dissipation, IGBT (Note 2)	6.4	kW
PD	Maximum power dissipation, Diode (Note 2)	4.05	kW
(di/dt) _{cr}	Critical diode di/dt (note 3)	2000	A/µs
Tj	Operating temperature range.	-40 to +125	°C
T _{stg}	Storage temperature range.	-40 to +125	°C

Notes: -

1) Unless otherwise indicated $T_j = 125^{\circ}C$.

2) $T_{sink} = 25^{\circ}C$, double side cooled.

3) Maximum commutation loop inductance 200nH.

4) Half-sinewave, 125°C T_j initial.

Characteristics

IGBT Characteristics

	PARAMETER	MIN	TYP	MAX	TEST CONDITIONS	UNITS
V _{CE(sat)} Collector – emitter satura		-	2.57	2.97	$I_C = 1000A, V_{GE} = 15V, T_j = 25^{\circ}C$	V
	Collector – enlitter saturation voltage	-	3.40	3.80	$I_C = 1000A, V_{GE} = 15V$	V
Vo	Threshold voltage	-	-	1.84	Current ren rev 222 40004	V
rs	Slope resistance	-	-	1.97	Current range: 333 – 1000A	mΩ
$V_{\text{GE(TH)}}$	Gate threshold voltage	-	5.3	-	$V_{CE} = V_{GE}, I_C = 85 \text{mA}$	V
ICES	Collector – emitter cut-off current		10	25	$V_{CE} = V_{CES}, V_{GE} = 0V$	mA
I _{GES}	Gate leakage current	-	-	±10	$V_{GE} = \pm 20V$	μA
Cies	Input capacitance	-	135	-	V_{CE} = 25V, V_{GE} = 0V, f = 1MHz	nF
t _{d(on)}	Turn-on delay time	-	1.7	-		μs
tr(V)	Rise time	-	1.8	-	I _C =1000A, V _{CE} =1800V, di/dt=2000A/μs	μs
Qg(on)	Turn-on gate charge	-	21	-	$V_{GE} = \pm 15V$, L _s =200nH	μC
Eon	Turn-on energy	-	2.6	-	$R_{G(ON)}$ = 2.2 Ω , $R_{G(OFF)}$ =15 Ω , C_{GE} =430nF	J
t _{d(off)}	Turn-off delay time	-	5.3	-	Integral diode used as freewheel diode	μs
t _f (I)	Fall time	-	1.5	-	(Note 3, 4 & 5)	μs
Qg(off)	Turn-off gate charge	-	13	-		μC
Eoff	Turn-off energy	-	2.7	-		J
lsc	Short circuit current	-	3000	-	V_{GE} +15V, V _{CC} =1800V, V _{CEmax} SV _{CES} , t_p S10µs	А

	Diode Characteristics							
	PARAMETER	MIN	TYP	MAX	TEST CONDITIONS	UNITS		
Vf	Forward voltage	-	2.66	2.95	IF = 1000A, T _j =25°C	V		
		-	3.0	3.3	IF = 1000A	V		
V ₀	Threshold voltage	-	-	1.71	Current range 333 - 1000A	V		
r _s	Slope resistance	-	-	1.59		mΩ		
Irm	Peak reverse recovery current	-	470	-	I _F = 1000A, V _{GE} = ±15V, di/dt=2000A/µs	А		
Qrr	Recovered charge	-	1040	-		μC		
trr	Reverse recovery time, 50% chord	-	1.7	-		μs		
Er	Reverse recovery energy	-	1.2	-		J		

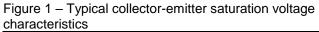
Thermal Characteristics

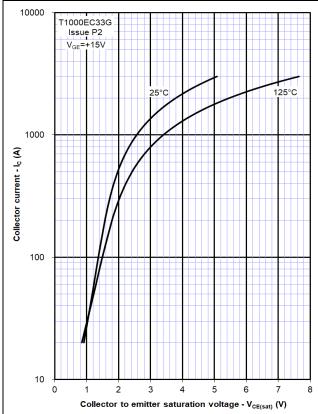
	PARAMETER	MIN	TYP	MAX	TEST CONDITIONS	UNITS
R _{thJK}	Thermal resistance junction to sink, IGBT	-	-	15.6	Double side cooled	K/kW
		-	-	25.4	Collector side cooled	K/kW
		-	-	40.5	Emitter side cooled	K/kW
R _{thJK}	Thermal resistance junction to sink, Diode	-	-	24.7	Double side cooled	K/kW
		-	-	37.9	Cathode side cooled	K/kW
		-	-	70.8	Anode side cooled	K/kW
F	Mounting force	25	-	35	Note 2	kN
Wt	Weight	-	1.2	-		kg

Notes:-

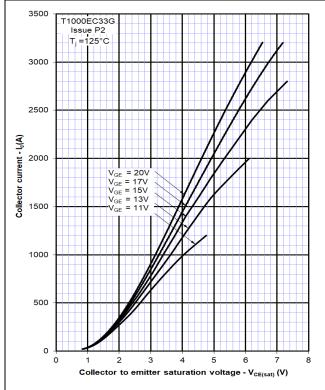
es:-Unless otherwise indicated $T_j {=} 125^\circ C.$ Consult application note 2008AN01 for detailed mounting requirements C_{GE} is additional gate – emitter capacitance added to output of gate drive E_{on} integration time 15µs from 10% rising $I_{G.}$ E_{off} integration time 15µs from 90% falling V_{GE} .

4)

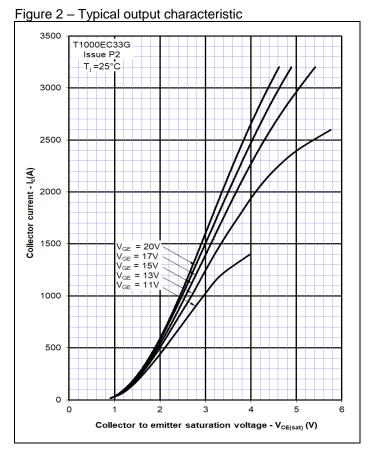
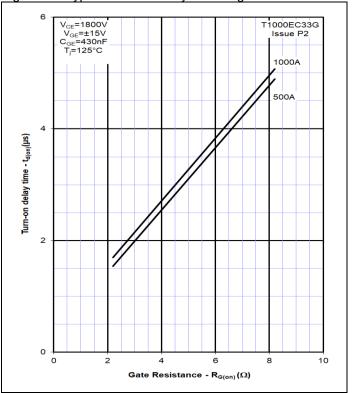
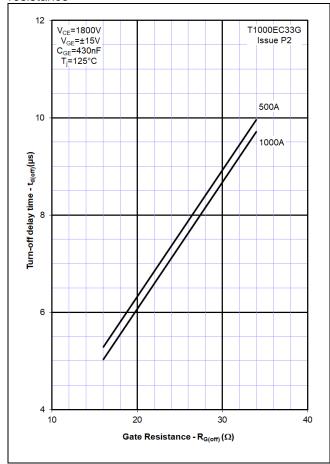
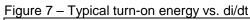

5)


¹⁾

²⁾ 3)



Curves

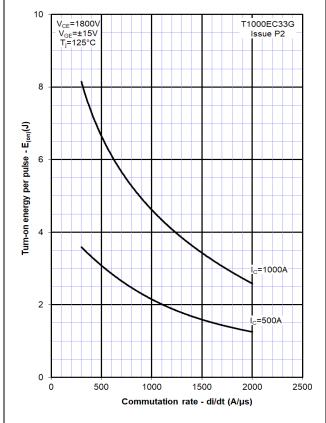

Figure 4 – Typical turn-on delay time vs gate resistance

Figure 5 – Typical turn-off delay time vs. gate resistance

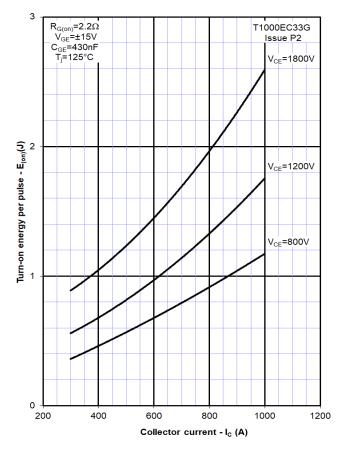
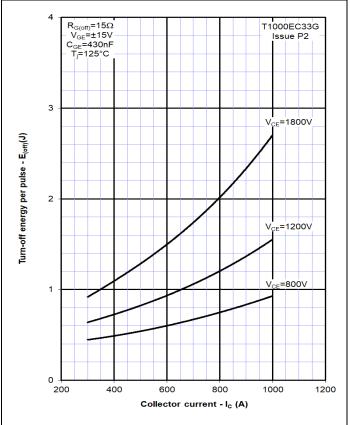
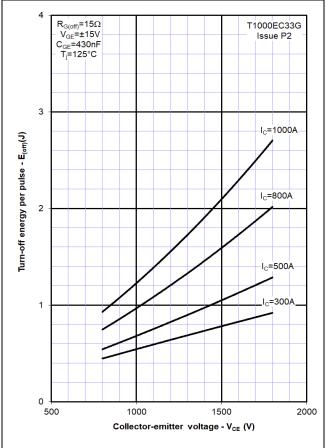
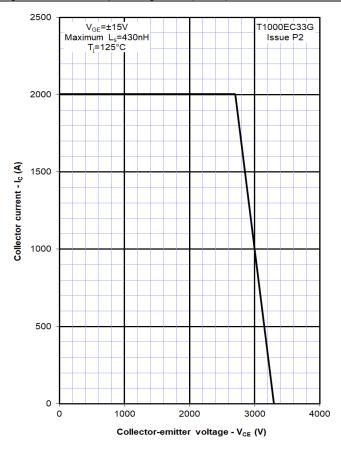
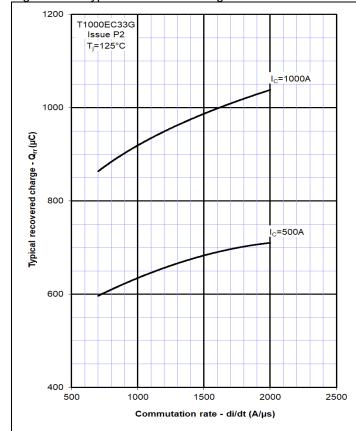
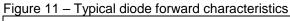
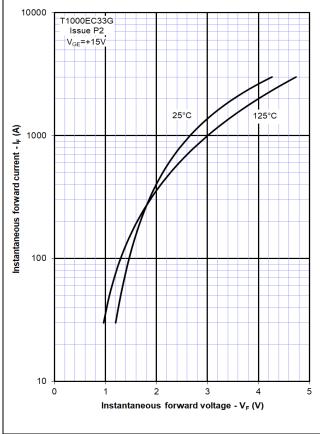




Figure 8 - Typical turn-off energy vs. collector current


Prospective Data Sheet T1000EC33G Issue P2




Figure 9 – Turn-off energy vs voltage


Figure 10 – Safe operating area (IGBT)

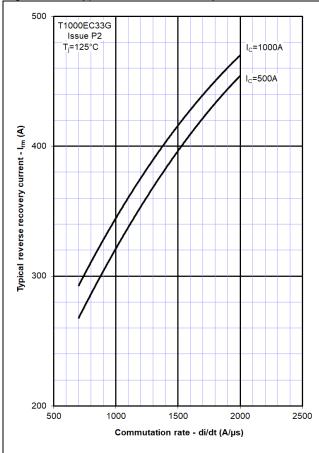


Figure 13 - Typical reverse recovery current

1.5

Figure 15 - Typical reverse recovery energy

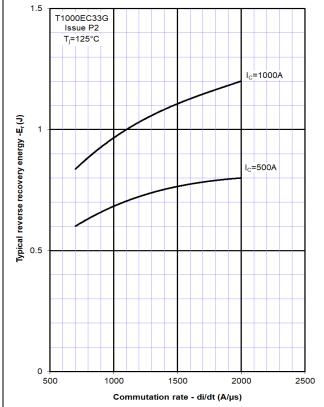


Figure 14 – Typical reverse recovery time

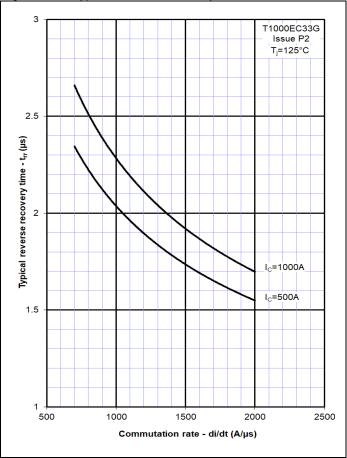
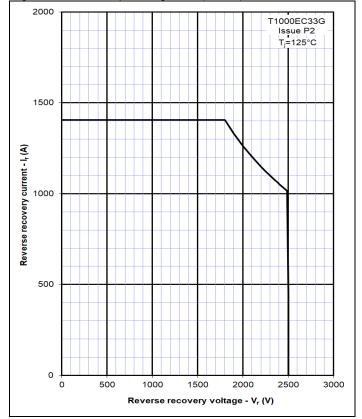
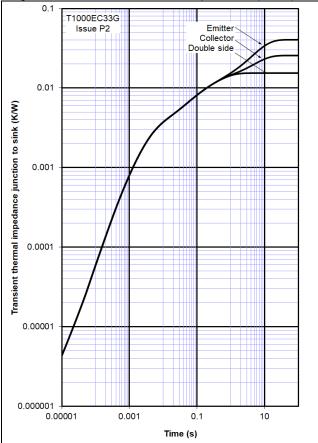
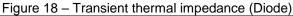
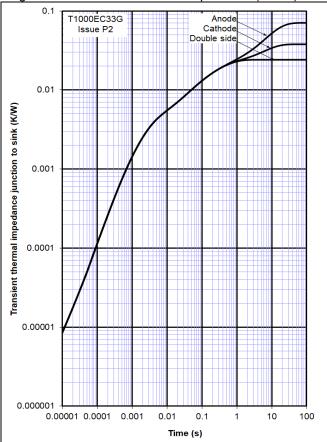




Figure 16 - Safe operating area (Diode)




Prospective Data Sheet T1000EC33G Issue P2

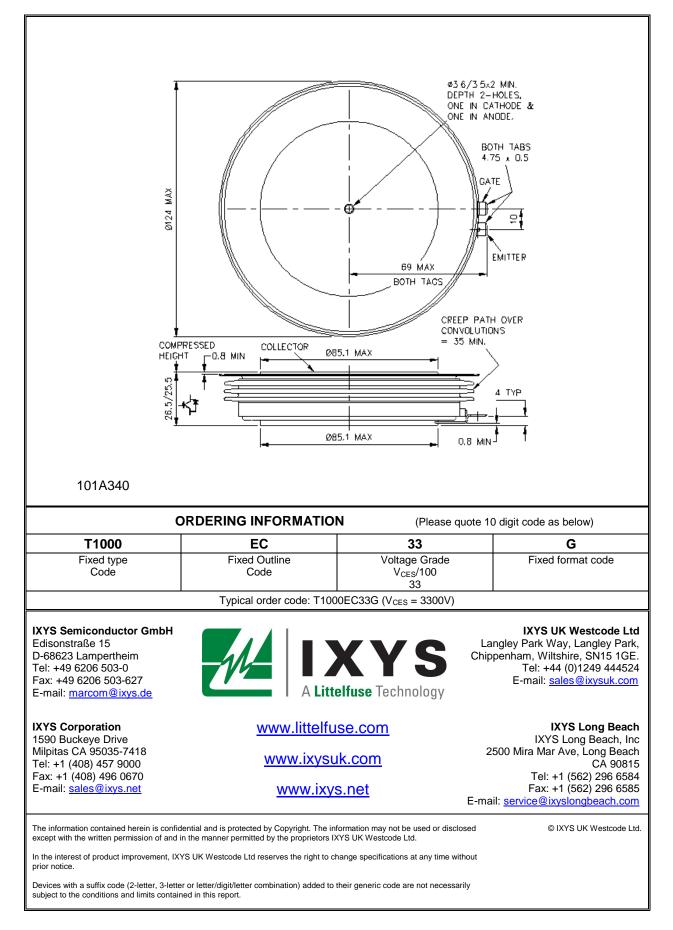


Figure 17 – Transient thermal impedance (IGBT)

Outline Drawing & Ordering Information

Disclaimer Notice Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

IXYS:

T1000EC33G