

Three phase full Bridge

with Trench MOSFETs in DCB isolated high current package $V_{\rm DSS}$ = 75 V = 255 A $R_{DSon typ.} = 1.1 \text{ m}\Omega$

Part number MTI200WX75GD

Surface Mount Device

Features / Advantages:

- MOSFETs in trench technology:
 - low R_{DSon}
- optimized intrinsic reverse diode
- · package:
 - high level of integration
 - high current capability
 - aux. terminals for MOSFET gate control
 - terminals for soldering or welding connections
 - isolated DCB ceramic base plate with optimized heat transfer
- Space and weight savings
- · High current capability

Applications:

AC drives

- in automobiles
 - electric power steering
 - starter generator
- in industrial vehicles
- propulsion drives
- fork lift drives
- · Battery supplied equipment
- DC-DC converter

Package: ISOPLUS-DIL®

- High level of integration
- RoHS compliant
- Terminals for soldering or welding connections
- Space and weight savings
- High reliability
- · Low thermal impedance

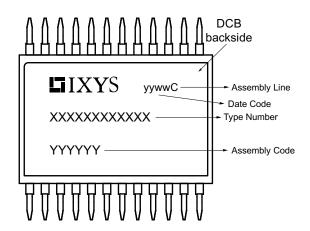
Terms & Conditions of usage

The data contained in this product data sheet is exclusively intended for technically trained staff. The user will have to evaluate the suitability of the product for the intended application and the completeness of The data contained in this product data sheet is exclusively intended not rechinically families stail. The description of the product for the intended application and the completeness of the product data with respect to his application. The specifications of our components may not be considered as an assurance of component characteristics. The information in the valid application and assembly notes must be considered. Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of your product, please contact your local sales

Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact your local sales office Should you intend to use the product in aviation, in health or life endangering or life support applications, please notify. For any such application we urgently recommend

- to perform joint risk and quality assessments;
 the conclusion of quality agreements;
- to establish joint measures of an ongoing product survey, and that we may make delivery dependent on the realization of any such measures

IXYS reserves the right to change limits, test conditions and dimensions.


20170614g

MOSFET	's			Ratings			
Symbol	Definitions	Conditions		min.	typ.	max.	Unit
V _{DSS}	drain source breakdown voltage	$T_{VJ} = 25$	°C to 150°C			75	V
V _{GS}	max. DC gate source voltage max. transient gate source voltage					±15 ±20	V V
I _{D25} I _{D90}	continuous drain current (die capability)		T _C = 25°C T _C = 90°C			255 190	A A
R _{DS(on)} 1)	static drain source on resistance		$T_{VJ} = 25^{\circ}C$ $T_{VJ} = 125^{\circ}C$		1.1 1.8	1.3	mΩ
$V_{GS(th)}$	gate threshold voltage	$I_D = 275 \ \mu A; V_{DS} = V_{GS}$	$T_{VJ} = 25^{\circ}C$	2.3	3.1	3.8	V
I _{DSS}	drain source leakage current	20 200 40	$T_{VJ} = 25^{\circ}C$ $T_{VJ} = 125^{\circ}C$		10	1 100	μA μA
I _{GSS}	gate source leakage current	$V_{GS} = \pm 20 \text{ V}; V_{DS} = 0 \text{ V}$				500	nA
R _G	gate resistance	on chip			2.7		Ω
C _{iss} C _{oss} C _{rss}	input capacitance output capacitance reverse transfer capacitance	$V_{GS} = 0 \text{ V}; V_{DS} = 38 \text{ V}; f = 1 \text{ Mhz}$			10.8 2.42 110	14.4 3.22	nF nF pF
$egin{array}{c} \mathbf{Q}_{\mathrm{g}} \ \mathbf{Q}_{\mathrm{gs}} \ \mathbf{Q}_{\mathrm{gd}} \end{array}$	total gate charge gate source charge gate drain (Miller) charge	$V_{GS} = 10 \text{ V}; V_{DS} = 38 \text{ V}; I_{D} = 100 \text{ A}$			155 53 32		nC nC nC
$egin{array}{l} oldsymbol{t_{d(on)}} \ oldsymbol{t_r} \ oldsymbol{t_{d(off)}} \ oldsymbol{t_f} \ oldsymbol{E_{on}} \end{array}$	turn-on delay time current rise time turn-off delay time current fall time turn-on energy per pulse turn-off energy per pulse	inductive load $V_{GS} = 10 \text{ V; } V_{DS} = 30 \text{ V}$ $I_D = 100 \text{ A; } R_G = 27 \Omega$	T _{vJ} = 125°C		145 70 520 55 80 350		ns ns ns ns
E _{off} E _{rec(off)}	turn-off reverse recovery losses				350		µJ µJ
R _{thJC}	thermal resistance junction to case					0.85	K/W
R _{thJH}	thermal resistance junction to heatsink	with heat transfer paste (IXYS test	setup)		1.1	1.4	K/W
		¹⁾ $V_{DS} = I_{D^*}(R_{DS(on)} + 2 \cdot R_{Pin \text{ to Chip}})$.,				
Source-E	Drain Diode						
I _{F25} I _{F90}	forward current (body diode)		$T_{C} = 25^{\circ}C$ $T_{C} = 90^{\circ}C$			175 100	A A
V _{SD}	source drain voltage	$I_F = 100 \text{ A}; V_{GS} = 0 \text{ V}$	$T_{VJ} = 25^{\circ}C$		0.9	1.2	V
\mathbf{Q}_{RM} \mathbf{I}_{RM} \mathbf{t}_{rr}	reverse recovery charge max. reverse recovery current reverse recovery time	$V_R = 30 \text{ V}; I_F = 100 \text{ A}$ $R_G = 27 \Omega$	T _{VJ} = 125°C		730 27 42		nC A ns

Package	ISOPLUS-DIL®			Ratings			
Symbol	Definitions	Conditions		min.	typ.	max.	Unit
I _{RMS}	RMS current	(L1+L3+, L1I may be additiona (PCB tracks)	per pin in main current paths (L1+L3+, L1L3-, L1L3) may be additionally limited by external connections (PCB tracks) 2 pins for output L1, L2, L3			75	А
T _{stg}	storage temperature			-55		125	°C
T_{op}	operation temperature			-55		150	°C
T_{VJ}	virtual junction temperature			-55		175	°C
Weight					13		g
F _c	mounting force with clip			50		250	N
V _{ISOL}	isolation voltage	t = 1 second	50/60 Hz, RMS, I _{ISOL} ≤ 1 mA	1200			V
		t = 1 minute		1000			V
R _{pin-chip}	resistance terminal to chip	$V_{DS} = I_{D} \cdot (R_{DS(on)})$	$V_{DS} = I_{D} \cdot (R_{DS(on)} + 2 \cdot R_{pin \text{ to chip}})$		0.5		mΩ
C _P	coupling capacity	between shorted	between shorted pins and back side metallization		160		pF

Part number

M = MOSFET

T = Trench

I = Infineon Trench

200 = Current Rating [A]
WX = 6-Pack with separated phase legs
75 = Reverse Voltage [V]
GD = ISOPLUS-DIL

Ordering	Part Name	Marking on Product	Delivering Mode	Base Qty	Ordering Code
Standard	MTI200WX75GD-SMD	MTI200WX75GD	Tube	13	516955

Outlines ISOPLUS-DIL® SEATING PLANE Α Detail A 3,55+0,02 $3,5 \pm 0,02$ contact pin: punching burr - galv. tin plating, per pin side: Sn 10...25 μm, undercoating Ni 0,2...1 μm - stamping edges may be free of tin - puching burr: ≤ 0,05mm 0,5 +0,15 1 ±0,1 \$\\ \frac{5}{100}, \\ \frac{6}{100}, \\ \frac{1}{100}, \\ \frac{1} (1) Convex bow of substrate, 29 ±0,15 typ. 10-40 µm longitudinal and 32 ±0,15 5-15 µm transversal 24x 39 ±0,15 Distance between pin and case bottom side. <u>+</u>0.1 M|A|B|C Distance between pin and 包 L3 \$5 L3 contact surface. G6 L3+ 1±0,15 S6 \(\Lambda\) Distance between parallel planes aligned #6 L3-Ъ 22x 3 ±0,1 2,25 = L2 **-**G3 to top and bottom sides of the package **S**3 L2 _ ш G4 37,5 ±0,25 L2+ \$4 L2-ШE L1 G1 Ш **#**E **S**1 L1 Ш G2 Ш 1.6 В C 25 ±0,25 пппппппппппп 33,4 ±0,15 1,4 ±0,1 **o** L3+ <u>Remarks:</u> 1) pin layout / dimensions are conditionally 2) soldering paste thickness: 200µm **O** L3 T2

S6

O L3-

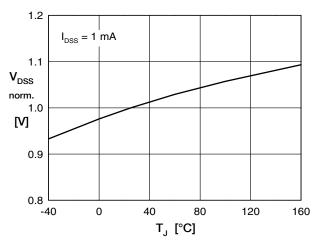


Fig.1 Drain source breakdown voltage V_{DSS} vs. junction temperature T_{VJ}

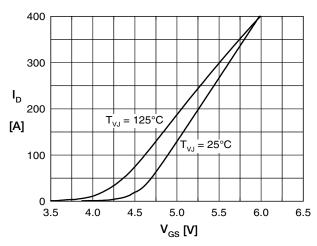


Fig. 2 Typ. transfer characteristics

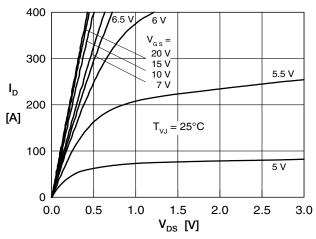


Fig. 3 Typ. output characteristics on die level

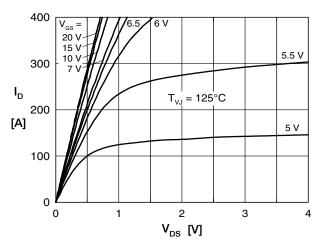


Fig. 4 Typ. output characteristics on die level

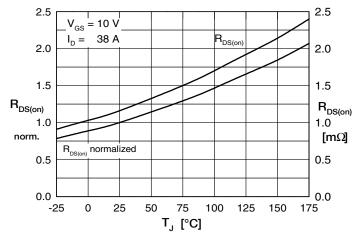


Fig.5 Drain source on-state resistance $R_{DS(on)}$ vs. junction temperature $T_{\text{\tiny V,I}},$ on die level

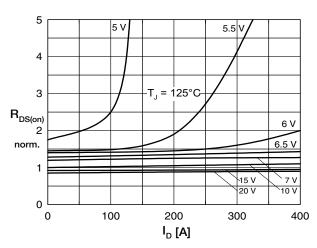


Fig. 6 Drain source on-state resistance $R_{\mathrm{DS(on)}}$ versus I_{D} , on die level

V. /

IXYS reserves the right to change limits, test conditions and dimensions.

20170614g

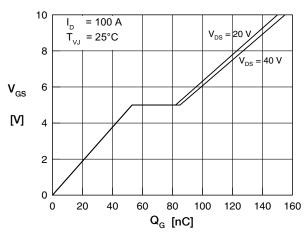


Fig.7 Typical turn on gate charge

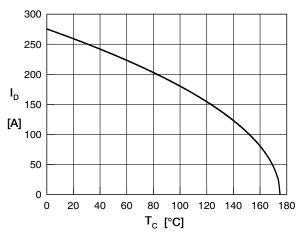


Fig. 8 Drain current I_D vs. case temperature T_C (Chip capability)

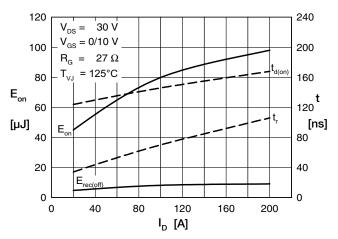


Fig. 9 Typ. turn-on energy and switching times versus drain current, inductive switching

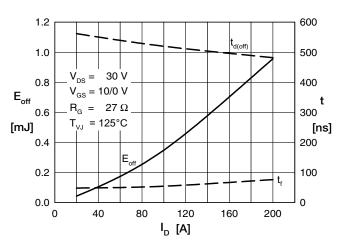


Fig. 10 Typ. turn-off energy and switching times versus drain-current, inductive switching

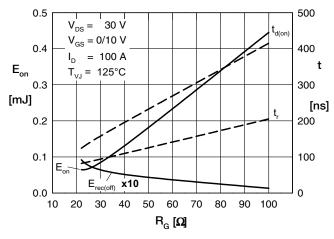


Fig. 11 Typ. turn-on energy and switching times versus gate resistor, inductive switching

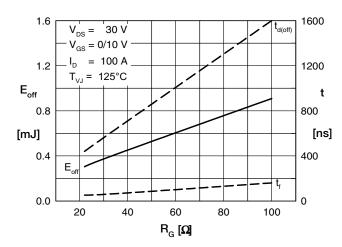


Fig. 12 Typ. turn-off energy and switching times versus gate resistor, inductive switching

IXYS reserves the right to change limits, test conditions and dimensions.

20170614g

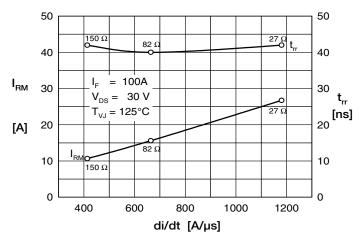


Fig. 13 Typ. reverse recovery characteristics

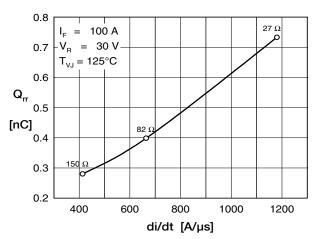


Fig. 14 Typ. reverse recovery characteristics

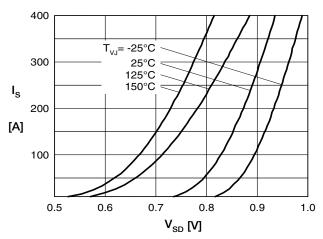


Fig.15 Source current I_S vs. source drain voltage V_{SD} (body diode) on die level

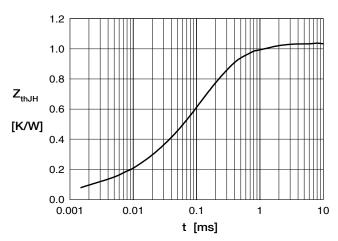


Fig. 16 Typ. thermal impedance junction to heatsink Z_{thJH} with heat transfer paste (IXYS test setup)

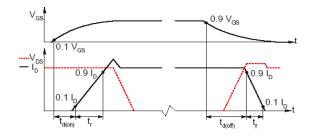


Fig. 17 Definition of switching times

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

IXYS:

MTI200WX75GD-SMD