
Silicon N Channel MOSFET Tetrode

BF 998

Features

- Short-channel transistor with high S/C quality factor
- For low-noise, gain-controlled input stages up to 1 GHz

Type Marking		Ordering Code	Pin Configuration				Package ¹⁾	
		(tape and reel)	1	2	3	4	1	
BF 998	МО	Q62702-F1129	S	D	G2	G١	SOT-143	

Maximum Ratings

Parameter	Symbol	Values	Unit
Drain-source voltage	Vos	12	V
Drain current	Ιο	30	mA
Gate 1/gate 2 peak source current	± /G1/2SM	10	
Total power dissipation, $T_{\rm S} < 76$ °C	Ptot	200	mW
Storage temperature range	Tstg	- 55 + 150	°C
Channel temperature	Tch	150	1

Thermal Resistance

Junction - soldering point	Rth JS	< 370	K/W
	L		

1) For detailed information see chapter Package Outlines.

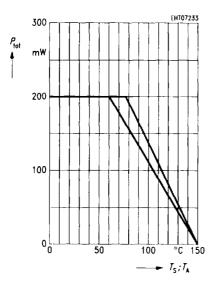
Semiconductor Group

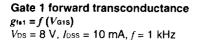
Electrical Characteristics

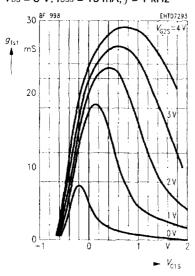
at $T_A = 25$ °C, unless otherwise specified.

Parameter	Symbol	Values			Unit
			typ.	max.	
DC Characteristics					
Drain-source breakdown voltage $I_D = 10 \ \mu A$, $V_{G1S} = -V_{G2S} = 4 \ V$	$V_{(\mathrm{BR})}$ ds	12	· T <u>-</u>	-	V
Gate 1-source breakdown voltage $\pm J_{G1S} = 10 \text{ mA}, V_{G2S} = V_{DS} = 0$	± V _(BR) GISS	8	-	12	-1
Gate 2-source breakdown voltage ± I _{G2S} = 10 mA, V _{G1S} = V _{DS} = 0	$\pm V_{(BB)}$ g2ss	8	-	12	
Gate 1-source leakage current ± Vg1s = 5 V, Vg2s = Vps = 0	t /Giss	-	-	50	nA
Gate 2-source leakage current $\pm V_{G2S} = 5 V$, $V_{G1S} = V_{DS} = 0$	± /G255	_	-	50	1
Drain current Vos = 8 V, Vgis = 0, Vgss = 4 V	/bss	2	-	18	mA
Gate 1-source pinch-off voltage $V_{DS} = 8 V$, $V_{G2S} = 4 V$, $I_D = 20 \mu A$	VG1S(p)	-	-	2.5	V
Gate 2-source pinch-off voltage $V_{DS} = 8 V$, $V_{G1S} = 0$, $I_D = 20 \mu A$	· VG2S(p)	-	-	2	

Electrical Characteristics

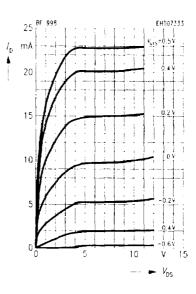

at $T_A = 25$ °C, unless otherwise specified.

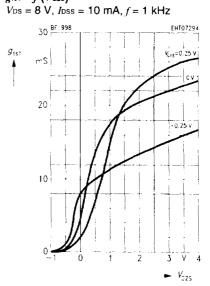

Parameter	Symbol		Unit		
		min.	typ.	max.	
AC Characteristics					
Forward transconductance V _{DS} = 8 V, / _D = 10 mA, V _{G2S} = 4 V f= 1 kHz	gis .	-	24	-	mS
Gate 1 input capacitance $V_{DS} = 8 \text{ V}, I_D = 10 \text{ mA}, V_{G2S} = 4 \text{ V}$ f = 1 MHz	C'g1ss	 	2.1	2.5	pF
Gate 2 input capacitance V _{DS} = 8 V, / _D = 10 mA, V _{G2S} = 4 V /= 1 MHz	C'g2ss	- 	1.2		-
Reverse transfer capacitance Vos = 8 V, Io = 10 mA, V _{G2S} = 4 V f = 1 MHz	C`dg1	-	25	-	fF
Output capacitance $V_{DS} = 8 V, I_D = 10 mA, V_{G2S} = 4 V$ f = 1 MHz	('dss	-	1.05	-	pF
Power gain (test circuit 1) Vos = 8 V, Jo = 10 mA, f = 200 MHz, Ga = 2 mS, GL = 0.5 mS, Vass = 4 V	Gps		28	-	dB
Power gain (test circuit 2) $V_{DS} = 8 V, J_D = 10 mA, f = 800 MHz, G_G = 3.3 mS, G_L = 1 mS, V_{G2S} = 4 V$	Gps		20	-	1
Noise figure (test circuit 1) $V_{DS} = 8 V, I_D \approx 10 \text{ mA}, f = 200 \text{ MHz},$ $G_G = 2 \text{ mS}, G_L = 0.5 \text{ mS}, V_{G2S} = 4 V$	F	 	0.6		dB
Noise figure (test circuit 2) $V_{DS} = 8 \text{ V}, I_D = 10 \text{ mA}, f = 800 \text{ MHz}, G_G = 3.3 \text{ mS}, G_L = 1 \text{ mS}, V_{G2S} = 4 \text{ V}$	F	 	1		
Control range (test circuit 2) V _{DS} = 8 V, V _{G2S} = 4 2 V /= 800 MHz	ΔG_{PS}	40	-	-	

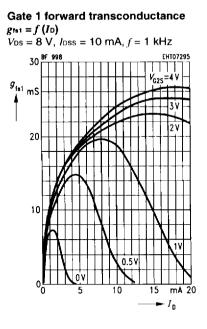


Semiconductor Group

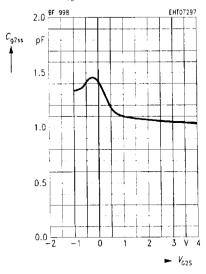
Total power dissipation $P_{\text{tot}} = f(T_A)$



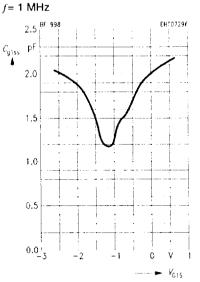



Semiconductor Group

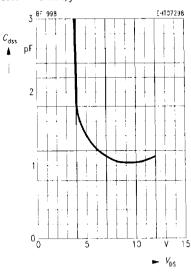
Output characteristics $I_D = f(V_{DS})$ $V_{G2S} = 4 V$



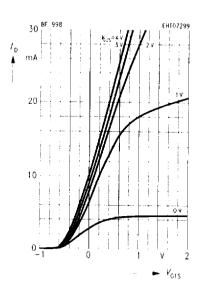
Gate 1 forward transconductance $g_{1+1} = f(V_{G2S})$

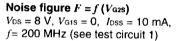


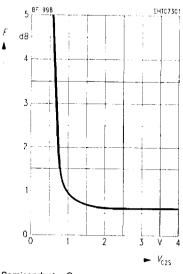
Gate 2 input capacitance $C_{gas} = f(V_{G2S})$ $V_{G1S} = 0 V, V_{DS} = 8 V$ $I_{DSS} = 10 \text{ mA}, f = 1 \text{ MHz}$

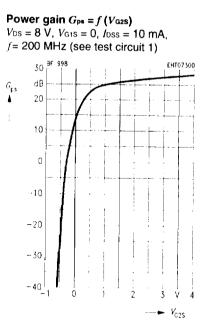


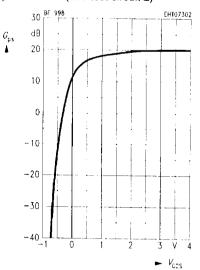
Semiconductor Group

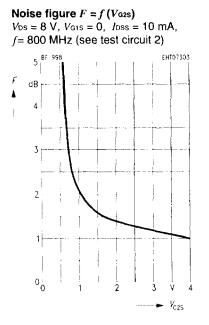

Gate 1 input capacitance $C_{g1ss} = f(V_{G1S})$ $V_{G2S} = 4 \text{ V}, V_{DS} = 8 \text{ V}, I_{DSS} = 10 \text{ mA},$



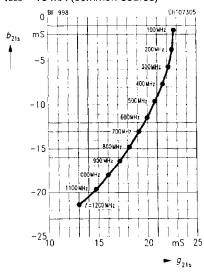

Output capacitance $C_{dss} = f(V_{DS})$ $V_{G1S} = 0 V, V_{G2S} = 4 V$ $I_{DSS} = 10 \text{ mA}, f = 1 \text{ MHz}$


Drain current $I_D = f(V_{G1S})$ $V_{DS} = 8 V$

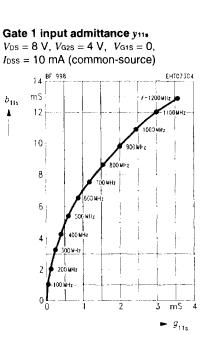


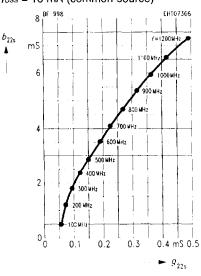


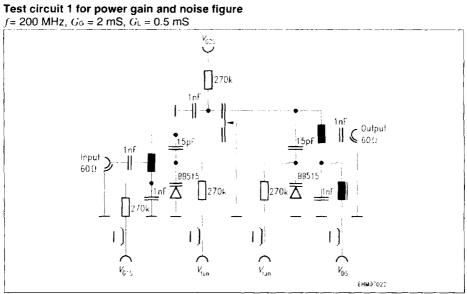
Semiconductor Group

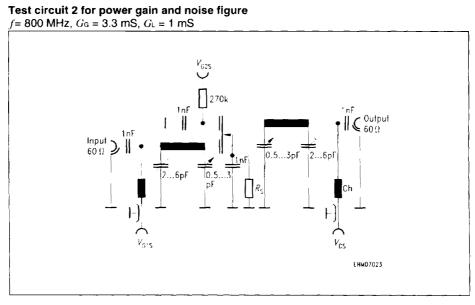


Power gain $G_{Ps} = f(V_{G2S})$ $V_{DS} = 8 V, V_{G1S} = 0, I_{DSS} = 10 mA,$ f = 800 MHz (see test circuit 2)




Gate 1 forward transfer admittance y 21. VDS = 8 V, Va2S = 4 V, Va1S = 0 IDSS = 10 mA (common-source)




Semiconductor Group

Output admittance y 22s VDS = 8 V, VG2S = 4 V, VG1S = 0 IDSS = 10 mA (common-source)

Semiconductor Group

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Infineon: BF998E6327HTSA1