

Z8F80607085

Preface

Scope and purpose

This document describes the usage of the OPTIREG™ linear voltage regulator TLS850F3TUVxx demoboard for the TLS850F3TUV33 and TLS850F3TUV50 from Infineon Technologies AG. Please also refer to the corresponding datasheets.

Intended audience

This document is intended for engineers who develop applications.

Table of contents

Table of contents

	Preface	. 1
	Table of contents	.2
1	Introduction	. 3
1.1	General description	. 3
1.2	TLS850F3TUV33 and TLS850F3TUV50 features	. 3
1.3	Block diagram	. 4
2	Demoboard	. 5
2.1	Assembly	.5
2.2	Operating conditions	. 6
2.3	Configuration	.7
2.3.1	Signal adaption	. 8
2.4	Connectors	. 9
3	Schematic and layout	10
3.1	Schematic	10
3.2	Layout	11
4	Bill of materials	13
5	Restrictions	14
6	Revision history	15
	Disclaimer	16

1 Introduction

Introduction 1

1.1 **General description**

The TLS850F3TUV33 and TLS850F3TUV50 are monolithic integrated low drop out voltage regulators for loads up to 500 mA in a PG-TO252-7 package (DPAK). With an input voltage range of 3 V to 42 V and very low quiescent current of only 26 µA, these devices are perfectly suitable for automotive or other supply systems connected to the battery permanently. Both variants provide an output voltage accuracy of ±2%.

The loop concept combines fast regulation and very good stability while requiring only one small ceramic capacitor of 1 µF at the output. The operating range starts already at an input voltage of only 3 V (extended operating range). This makes the devices also suitable to supply automotive systems that need to operate during cranking condition.

Additional features include:

- reset circuit to supervise the output voltage and delay the reset at power-on
- watchdog circuit to monitor a microcontroller
- shared external delay capacitor to set both reset timing and watchdog timing
- output current limitation
- thermal shutdown

1.2 TLS850F3TUV33 and TLS850F3TUV50 features

- Output voltage 5 V and 3.3 V ±2%
- Current capability 500 mA
- Input voltage range from 3 V to 42 V
- Stable with 1 µF ceramic output capacitor
- Ultra low current consumption: typically 26 µA
- Very low drop out voltage: typically 300 mV at 250 mA
- Watchdog circuit for monitoring a microprocessor
- Watchdog inhibit
- Reset circuit supervises the output voltage
 - Programmable delay time
- Output current limitation
- Overtemperature shutdown
- Automotive temperature range $T_i = -40^{\circ}\text{C}$ to 150°C
- Green Product (RoHS compliant)

1 Introduction

1.3 Block diagram

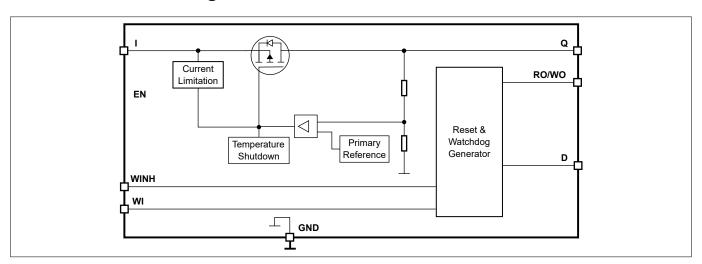


Figure 1 Block diagram TLS850F3TUVxx

2 Demoboard

2 **Demoboard**

2.1 **Assembly**

There are two different demoboard assemblies available. One for the TLS850F3TUV33 and one for the TLS850F3TUV50.

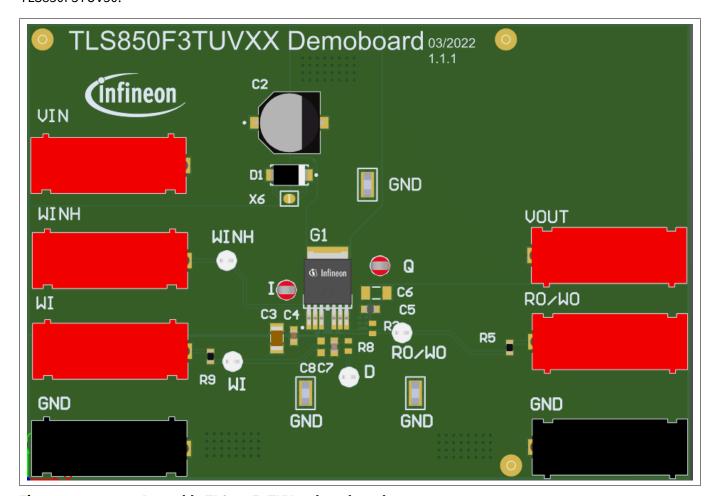


Figure 2 Assembly TLS850F3TUVxx demoboard

2 Demoboard

2.2 **Operating conditions**

To avoid electrical damage of the demoboard, the values in Table 1 must be maintained.

Limit values for operation¹⁾ Table 1

Parameter	Symbol ²⁾	Values			Unit	Note or condition
		Min.	Тур.	Max.		
Board supply voltage	V _{IN}	0	_	42	V	-
Output voltage	V_{Q}	-0.3	_	7	V	3)
Output current	IQ	0	_	500	mA	Limited by overcurrent protection
Watchdog inhibit	V_{WINH}	-0.3	_	7	V	3)
Reset output/watchdog output	V _{RO/WO}	-0.3	_	7	V	3)
Watchdog input	V_{WI}	-0.3	_	7	V	3)
Ground voltage	V_{GND}	0	_	0	V	-

 $T_{A} = 25^{\circ}\text{C}.$ 1)

Symbols refer to the connectors of the demoboard.

²⁾ 3) Absolute maximum rating.

2 Demoboard

2.3 Configuration

The demoboard has no configuration options.

2 Demoboard

2.3.1 Signal adaption

For easy signal adaption, for example connecting probes of an oscilloscope, test points are scattered across the PCB. The label of each test point indicates the probed signal. For further information on the mapping between test points and signals see Figure 4. The GND clip of the probe can be attached to one of several ground hooks as shown in Figure 3.

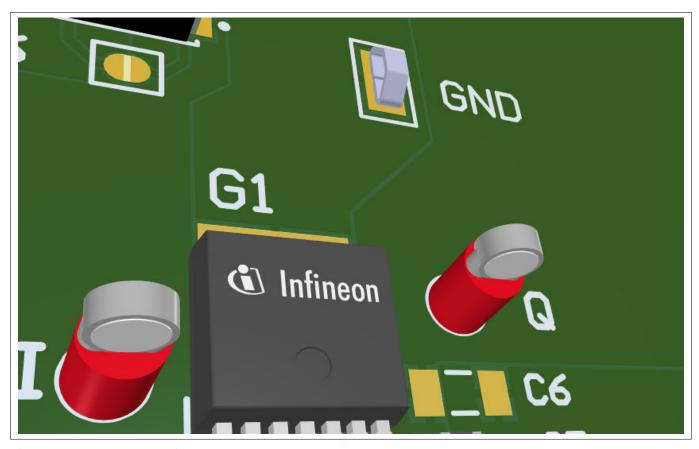


Figure 3 Testpoint and GND hook example

2 Demoboard

2.4 Connectors

Table 2 Connectors and device pin mapping

Label	PIN	Function
VIN	I	Regulator input
WINH	WINH	Watchdog inhibit input:
		"Low" activates the watchdog function.
		"High" deactivates the watchdog function.
		This pin has an integrated pull-down resistor.
WI	WI	Watchdog input:
		Serve watchdog with trigger input signal.
		This pin has an integrated pull-down resistor.
VOUT	Q	Regulator output
RO/WO	RO/WO	Reset output/Watchdog output:
		This pin has an integrated pull-up resistor to Q. It is an open collector output.
		If the reset and watchdog functions are not needed, then leave this pin open.
GND_VOUT, GND_VIN	GND	Ground

3 Schematic and layout

3 Schematic and layout

3.1 Schematic

The schematic in Figure 4 is assembled with either the TLS850F3TUV33 or the TLS850F3TUV50 mounted. Not mounted parts are optional and marked with a red cross.

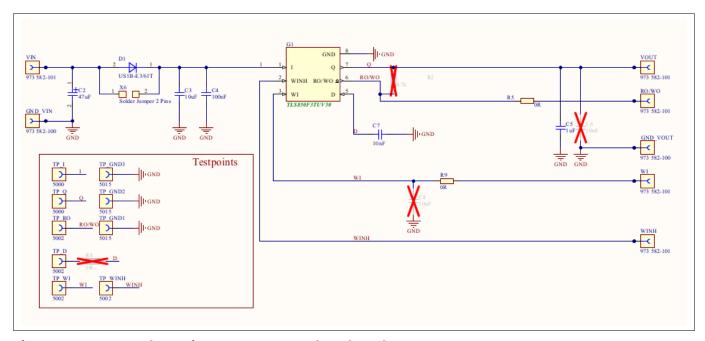


Figure 4 Schematic TLS850F3TUVxx demoboard

3 Schematic and layout

3.2 Layout

The PCB uses a four layer standard stack-up. The product can also be soldered to double layer boards. However, four layers offer better thermal characteristics. The configuration on this demoboard is comparable to the 2s2p thermal interface situation.

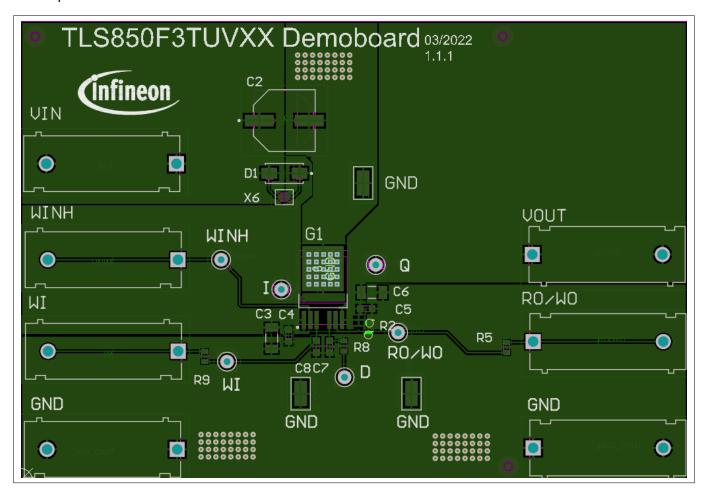


Figure 5 Top layer and components TLS850F3TUVxx demoboard

3 Schematic and layout

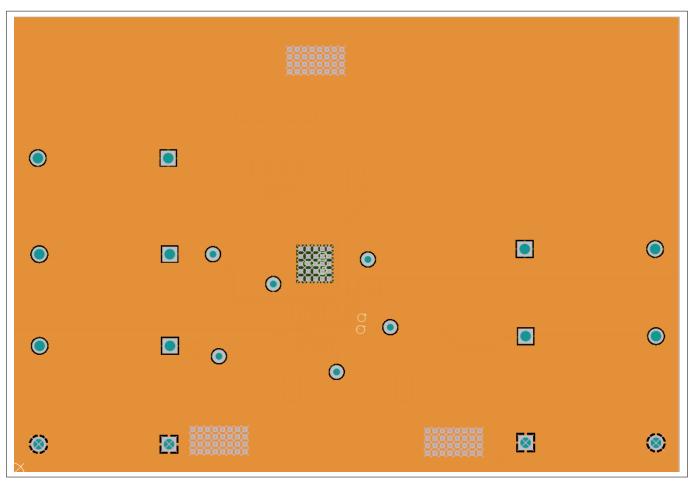


Figure 6 Bottom layer TLS850F3TUVxx demoboard

4 Bill of materials

4 Bill of materials

The bill of materials shows the components on the TLS850F3TUVxx demoboard. For the mounting condition of each component see Figure 4 and Figure 5. Mechanical parts, such as connectors or test-points are not mentioned.

Table 3 Bill of materials TLS850F3TUVxx demoboard

Part	Value	Package	
D1	US1B-E3/61T	DO-214	
C2	47 μF / 50 V	n.a.	
C3	10 μF / 50 V	1206	
C4	100 nF / 50 V	0603	
C5	1 μF / 16 V	0603	
C7	10 nF / 50 V	0603	
R5, R9	0 Ω	0603	

5 Restrictions

5 Restrictions

This demoboard offers limited features only for evaluation and testing of Infineon products. The demoboard is not an end product or finished appliance, nor is it intended or authorized by Infineon to be integrated into end products. The demoboard may not be used in any production system.

For further information please visit www.infineon.com.

6 Revision history

6 Revision history

Revision	Date	Changes
1.0	2024-05-08	Document created.

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2024-05-08 Published by Infineon Technologies AG 81726 Munich, Germany

© 2024 Infineon Technologies AG All Rights Reserved.

Do you have a question about any aspect of this document?

Email: erratum@infineon.com

Document reference IFX-lfs1714492767854 Z8F80607085

Important notice

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

Warnings

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Infineon:

TLS850F3TUV50BOARDTOBO1 TLS850F3TUV33BOARDTOBO1