

TLE75602-ESH

SPIDER+ 12V

SPI Driver for Enhanced Relay Control

1 Overview

Applications

- Low-side and High-side switches for 12 V in automotive or industrial applications such as lighting, heating, motor driving, energy and power distribution
-

Package **PG-TSDSO-24-21 Marking** TLE75602ESH

• Especially designed for driving relays, LEDs and motors.

Figure 1 TLE75602-ESH Application Diagram

Overview

Basic Features

- 16-bit serial peripheral interface for control and diagnosis
- Daisy Chain capability SPI also compatible with 8-bit SPI devices
- 2 CMOS compatible parallel input pins with Input Mapping functionality
- Cranking capability down to $V_s = 3.0$ V (supports LV124)
- Digital supply voltage range compatible with 3.3 V and 5 V microcontrollers
- Bulb Inrush Mode (BIM) to drive 2 W lamps and electronic loads
- Two internal PWM Generators for µC offload
- Very low quiescent current (with usage of IDLE pin)
- Limp Home mode (with usage of IDLE and IN pins)
- Green Product (RoHS compliant)
- AEC Qualified

Protection Features

- Reverse battery protection on V_S without external components
- Short circuit to ground and battery protection
- Stable behavior at under voltage conditions ("Lower Supply Voltage Range for Extended Operation")
- Over Current latch OFF
- Thermal shutdown latch OFF
- Overvoltage protection
- Loss of ground protection
- Loss of battery protection
- Electrostatic discharge (ESD) protection

Diagnostic Features

- Latched diagnostic information via SPI register
- Over Load detection at ON state
- Open Load detection at OFF state using Output Status Monitor function
- Output Status Monitor
- Input Status Monitor
- Open Load detection at ON state

Application Specific Features

- Fail-safe activation via Input pins in Limp-Home Mode
- SPI with Daisy Chain capability
- Safe operation at low battery voltage (cranking)
- 2 W lamps, 5 W lamps with two channels in parallel mode and enhanced capacitive loads driving capability (Bulb Inrush Mode)
- Two independent internal PWM generators to drive e.g. LEDs

Overview

Description

The TLE75602-ESH is an eight channel low-side and high-side power switch in PG-TSDSO-24-21 package providing embedded protective functions. It is specially designed to control relays and LEDs in automotive and industrial applications.

A serial peripheral interface (SPI) is utilized for control and diagnosis of the loads as well as of the device. For direct control and PWM there are two input pins available connected to two outputs by default. Additional or different outputs can be controlled by the same input pins (programmable via SPI).

Table 1 Product Summary

Detailed Description

The TLE75602-ESH is an eight channel low-side and high-side switch providing embedded protective functions. The output stages incorporate two low-side and six auto-configurable high-side or low side switches (typical $R_{DS(ON)}$ at T_{J} = 25°C is 1 Ω). The auto-configurable switches can be utilized in high-side or lowside configuration just by connecting the load accordingly. Protection and diagnosis functions adjust automatically to the hardware configuration. Driving a load from high-side offers the possibility to perform Open Load at ON diagnosis.

The 16-bit serial peripheral interface (SPI) is utilized to control and diagnose the device and the loads. The SPI interface provides daisy chain capability in order to assemble multiple devices (also devices with 8 bit SPI) in one SPI chain by using the same number of microcontroller pins.

This device is designed for low supply voltage operation, therefore being able to keep its state at low battery voltage ($V_S \ge 3.0$ V). The SPI functionality, including the possibility to program the device, is available only when the digital power supply is present (see **[Chapter 6](#page-18-0)** for more details).

The TLE75602-ESH is equipped with two input pins that are connected to two configurable outputs, making them controllable even when the digital supply voltage is not available. With the Input Mapping functionality it is possible to connect the input pins to different outputs, or assign more outputs to the same input pin. In this case more channels can be controlled with one signal applied to one input pin.

In Limp Home mode (Fail-Safe mode) the input pins are directly routed to channels 2 and 3. When IDLE pin is "low", it is possible to activate the two channels using the input pins independently from the presence of the digital supply voltage.

The device provides diagnosis of the load via Open Load at ON state, Open Load at OFF state (with **DIAG_OSM. OUTn** bits) and short circuit detection. For Open Load at OFF state detection, a internal current source *I*_{OL} can be activated via SPI.

Overview

Each output stage is protected against short circuit. In case of Overload, the affected channel switches OFF when the Overload Detection Current /_{L(OVLn)} is reached and can be reactivated via SPI. In Limp Home mode operation, the channels connected to an input pin set to "high" restart automatically after Output Restart time $t_{\text{RETRY(LH)}}$ is elapsed. Temperature sensors are available for each channel to protect the device against Over Temperature.

The power transistors are built by N-channel power MOSFET with one central chargepump for autoconfigurable channels. The inputs are ground referenced TTL compatible. The device is monolithically integrated in Smart Power Technology.

Block Diagram and Terms

2 Block Diagram and Terms

2.1 Block Diagram

Block Diagram and Terms

2.2 Terms

[Figure 3](#page-5-0) shows all terms used in this data sheet, with associated convention for positive values.

Figure 3 Voltage and Current definition

In all tables of electrical characteristics the channel related symbols without channel numbers are valid for each channel separately (e.g. V_{DS} specification is valid for V_{DS0} ... V_{DS7}).

Furthermore, parameters relative to output current can be indicated without specifying whether the current is going into the Drain pin or going out of the Source pin, unless otherwise specified. For instance, nominal output current can be indicated in the following ways: $I_{L(NOM)} I_{L_L(S(NOM))} I_{L_D(NOM)} I_{L_S(NOM)}$

All SPI registers bits are marked as follows: ADDR. PARAMETER (e.g. HWCR.RST) with the exception of the bits in the Diagnosis frames which are marked only with PARAMETER (e.g. UVRVS).

Pin Configuration

3 Pin Configuration

3.1 Pin Assignment

Figure 4 Pin Configuration TLE75602-ESH in PG-TSDSO-24-21

Pin Configuration

3.2 Pin Definitions and Functions

Pin Configuration

infineon

General Product Characteristics

4 General Product Characteristics

4.1 Absolute Maximum Ratings

Table 2 Absolute Maximum Ratings 1)

 T_{J} = -40 °C to +150 °C

all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

General Product Characteristics

Table 2 Absolute Maximum Ratings (cont'd)**1)**

 $T_{\rm J}$ = -40 °C to +150 °C

all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

General Product Characteristics

Table 2 Absolute Maximum Ratings (cont'd)**1)**

 T_1 = -40 °C to +150 °C

all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

1) Not subject to production test, specified by design.

2) For a duration of t_{on} = 400 ms; t_{on}/t_{off} = 10%; limited to 100 pulses

3) Device is mounted on a FR4 2s2p board according to Jedec JESD51-2,-5,-7 at natural convection; the Product (Chip+Package) was simulated on a 76.2 *114.3 *1.5 mm board with 2 inner copper layers (2 * 70 µm Cu, 2 * 35 µm Cu). Where applicable a thermal via array under the exposed pad contacted the first inner copper layer.

4) Pulse shape represents inductive switch off: $I_L(t) = I_L(0) \times (1 - t / t_{pulse})$; 0 < $t < t_{pulse}$

5) ESD susceptibility, HBM according to ANSI/ESDA/JEDEC JS001 (1.5k Ω, 100 pF)

6) ESD susceptibility, Charged Device Model "CDM" ESDA STM5.3.1 or ANSI/ESD S.5.3.1

Notes

- *1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.*
- *2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as "outside" normal operating range. Protection functions are not designed for continuous repetitive operation.*

4.2 Functional Range

Note: Within the functional or operating range, the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the Electrical Characteristics table.

General Product Characteristics

4.3 Thermal Resistance

Note: This thermal data was generated in accordance with JEDEC JESD51 standards. For more information, go to <www.jedec.org>.

Table 4 Thermal Resistance

1) not subject to production test, specified by design

2) Specified R_{thJA} value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board; the Product (Chip+Package) was simulated on a 76.2 $*$ 114.3 $*$ 1.5 mm board with 2 inner copper layers (2 $*$ 70 µm Cu, 2 $*$ 35 µm Cu). Where applicable a thermal via array under the exposed pad contacted the first inner copper layer.

4.3.1 PCB set up

Figure 5 2s2p PCB Cross Section

General Product Characteristics

Figure 6 PC Board for Thermal Simulation with 600 mm2 Cooling Area

Figure 7 PC Board for Thermal Simulation with 2s2p Cooling Area

General Product Characteristics

4.3.2 Thermal Impedance

Figure 8 Typical Thermal Impedance. PCB setup according [Chapter 4.3.1](#page-12-3)

Figure 9 Typical Thermal Resistance. PCB setup 1s0p

Control Pins

5 Control Pins

The device has three pins (IN0, IN1 and IDLE) to control directly the device without using SPI.

5.1 Input pins

TLE75602-ESH has two input pins available. Each input pin is connected by default to one channel (IN0 to channel 2, IN1 to channel 3). Input Mapping Registers **[MAPIN0](#page-67-0)** and **[MAPIN1](#page-68-1)** can be programmed to connect additional or different channels to each input pin, as shown in **[Figure 10](#page-15-0)**. The signals driving the channels are an OR combination between **[OUT](#page-67-1)** register status, PWM Generators (according to PWM Generator Output Mapping status), IN0 and IN1 (according to Input Mapping registers status). See **[Chapter 7.5](#page-36-0)** for further details.

Figure 10 Input Mapping

The logic level of the input pins can be monitored via the Input Status Monitor Register (**[INST](#page-68-2)**). The Input Status Monitor is operative also when TLE75602-ESH is in Limp Home mode. If one of the Input pins is set to "high" and the IDLE pin is set to "low", the device switches into Limp Home mode and activates the channel mapped by default to the input pins. See **[Chapter 6.1.5](#page-23-0)** for further details.

5.2 IDLE pin

The IDLE pin is used to bring the device into Sleep mode operation when is set to "low" and all input pins are set to "low".When IDLE pin is set to "low" while one of the input pins is set to "high" the device enters Limp Home mode.

To ensure a proper mode transition, IDLE pin must be set for at least $t_{\text{IDLE2SLEEP}}$ ([P_6.3.54,](#page-31-0) transition from "high" to "low") or $t_{SLEEP2IDLE}$ ([P_6.3.53](#page-31-1), transition from "low" to "high").

Setting the IDLE pin to "low" has the following consequences:

• All registers in the SPI are reset to default values

Control Pins

- *V*_{DD} and *V*_S Undervoltage detection circuits are disabled to decrease current consumption (if both inputs are set to "low")
- No SPI communication is allowed (SO pin remains in high impedance state also when CSN pin is set to "low") if both input pins are set to "low"

Control Pins

5.3 Electrical Characteristics Control Pins

Table 5 Electrical Characteristics: Control Pins

 V_{DD} = 3 V to 5.5 V, V_s = 7 V to 18 V, T_J = -40 °C to +150 °C (unless otherwise specified) Typical values: $V_{DD} = 5$ V, $V_S = 13.5$ V, $T_J = 25$ °C

Power Supply

6 Power Supply

The TLE75602-ESH is supplied by two supply voltages:

- \cdot V_s (analog supply voltage used also for the logic)
- V_{DD} (digital supply voltage)

The V_S supply line is connected to a battery feed and used, in combination with V_{DD} supply, for the driving circuitry of the power stages. In situations where V_S voltage drops below V_{DD} voltage (for instance during cranking events down to 3.0 V), an increased current consumption may be observed at VDD pin.

 V_S and V_{DD} supply voltages have an undervoltage detection circuit, which prevents the activation of the associated function in case the measured voltage is below the undervoltage threshold. More in detail:

- An undervoltage on both V_S and V_{DD} supply voltages prevents the activation of the power stages and any SPI communication (the SPI registers are reset)
- An undervoltage on V_{DD} supply prevents any SPI communication. SPI read/write registers are reset to default values.
- An undervoltage on V_S supply forces the TLE75602-ESH to drain all needed current for the logic from V_{DD} supply. All channels are disabled, and are enabled again as soon as $V_s \geq V_{S(OP)}$.

[Figure 11](#page-18-1) shows a basic concept drawing of the interaction between supply pins VS and VDD, the output stage drivers and SO supply line.

Figure 11 TLE75602-ESH Internal Power Supply concept

When 3.0 V \leq $V_s \leq$ V_{DD} - V_{SDEF} TLE75602-ESH operates in "Cranking Operative Range" (COR). In this condition the current consumption from VDD pin increases while it decreases from VS pin where the total current consumption remains within the specified limits. **[Figure 12](#page-19-0)** shows the voltage levels at VS pin where the device goes in and out of COR. During the transition to and from COR operative region, l_{VS} and l_{VDD} change between values defined for normal operation and for COR operation. The sum of both current remains within limits specified in "Overall current consumption" section (see **[Table 8](#page-26-0)**).

Power Supply

Figure 12 "Cranking Operative Range"

Furthermore, when $V_{S(UV)} \leq V_S \leq V_{S(OP)}$ it may be not possible to switch ON a channel that was previously OFF. All channels that are already ON keep their state unless they are switched OFF via SPI or via INn pins. An overview of channel behavior according to different V_S and V_{DD} supply voltages is shown in [Table 6](#page-20-0) (the table is valid after a successful power-up, see **[Chapter 6.1.1](#page-23-1)** for more details).

Power Supply

1) undervoltage condition on V_S must be considered - see **[Chapter 6.2.1](#page-24-0)** for more details

Power Supply

6.1 Operation Modes

TLE75602-ESH has the following operation modes:

- Sleep mode
- Idle mode
- Active mode
- Limp Home mode

The transition between operation modes is determined according to following levels and states:

- logic level at IDLE pin
- logic level at INn pins
- **[OUT.OUTn](#page-67-2)** bits state
- **[HWCR.ACT](#page-69-0)** bit state
- **[HWCR_PWM.PWM0](#page-70-0)** and **[HWCR_PWM.PWM1](#page-70-1)** bits state

The state diagram including the possible transitions is shown in **[Figure 13](#page-22-0)**. The behaviour of TLE75602-ESH as well as some parameters may change in dependence from the operation mode of the device. Furthermore, due to the undervoltage detection circuitry which monitors V_S and V_{DD} supply voltages, some changes within the same operation mode can be seen accordingly.

The operation mode of the TLE75602-ESH can be observed by:

- status of output channels
- status of SPI registers
- current consumption at VDD pin (I_{VDD})
- current consumption at VS pin (I_{VS})

The default operation mode to switch ON the loads is Active mode. If the device is not in Active mode and a request to switch ON one or more outputs comes (via SPI or via Input pins), it will switch into Active or Limp Home mode, according to IDLE pin status. Due to the time needed for such transitions, output turn-on time t_{ON} will be extended due to the mode transition latency.

Power Supply

Figure 13 Operation Mode state diagram

[Table 7](#page-22-1) shows the correlation between device operation modes, V_S and V_{DD} supply voltages, and state of the most important functions (channels operativity, SPI communication and SPI registers).

DD - ----- 9--					
Operation Mode	Function	Undervoltage condition on $V_s^{1)}$	Undervoltage condition on V_s	V_s not in undervoltage	V_s not in undervoltage
		$V_{DD} \leq V_{DD(UV)}$	V_{DD} > $V_{DD(UV)}$	$V_{DD} \leq V_{DD(UV)}$	$V_{DD} > V_{DD(UV)}$
Sleep	Channels	not available	not available	not available	not available
	SPI comm.	not available	not available	not available	not available
	SPI registers	reset	reset	reset	reset
Idle	Channels	not available	not available	not available	not available
	SPI comm.	not available	\checkmark	not available	\checkmark
	SPI registers	reset	\checkmark	reset	\checkmark
Active	Channels	not available	not available	\checkmark (IN pins only)	\checkmark
	SPI comm.	not available	\checkmark	not available	\checkmark
	SPI registers	reset	✔	reset	\checkmark
Limp Home	Channels	not available	not available	\checkmark (IN pins only)	\checkmark (IN pins only)
	SPI comm.	not available	\checkmark (read-only)	not available	\checkmark (read-only)
	SPI registers	reset	\checkmark (read-only) ²⁾	reset	\checkmark (read-only) ²⁾

Table 7 Device function in relation to operation modes, V_c and V_{on} voltages

1) see **[Chapter 6.2.1](#page-24-0)** for more details

2) see **[Chapter 6.1.5](#page-23-2)** for a detailed overview

Power Supply

6.1.1 Power-up

The Power-up condition is satisfied when one of the supply voltages (V_S or V_{DD}) is applied to the device and the INn or IDLE pins are set to "high". If V_S is above the threshold $V_{S(OP)}$ or if V_{DD} is above the threshold $V_{DD(LOP)}$ the internal power-on signal is set.

6.1.2 Sleep mode

When TLE75602-ESH is in Sleep mode, all outputs are OFF and the SPI registers are reset, independently from the supply voltages. The current consumption is minimum. See parameters $I_{\text{VDD}(SLEEP)}$ and $I_{\text{VS}(SLEEP)}$, or parameter I_{SIEFP} for the whole device.

6.1.3 Idle mode

In Idle mode, the current consumption of the device can reach the limits given by parameters *I*_{VDD(IDLE)} and *I*_{VS(IDLE)}, or by parameter *I*_{IDLE} for the whole device. The internal voltage regulator is working. Diagnosis functions are not available. The output channels are switched OFF, independently from the supply voltages. When *V*_{DD} is available, the SPI registers are working and SPI communication is possible. In Idle mode the **[ERRn](#page-66-0)** bits are not cleared for functional safety reasons.

6.1.4 Active mode

Active mode is the normal operation mode of TLE75602-ESH when no Limp Home condition is set and it is necessary to drive some or all loads. Voltage levels of V_{DD} and V_s influence the behavior as described at the beginning of [Chapter 6](#page-18-2). Device current consumption is specified with $l_{\sf VDD(ACTIVE)}$ and $l_{\sf VS(ACTIVE)}$ ($l_{\sf ACTIVE}$ for the whole device). The device enters Active mode when IDLE pin is set to "high" and one of the input pins is set to "high" or one **[OUT.OUTn](#page-67-2)** bit is set to "1". If **[HWCR.ACT](#page-69-0)** is set to "0", the device returns to Idle mode as soon as all inputs pins are set to "low" and **OUT. OUTn** bits are set to "0". If **HWCR, ACT** is set to "1", the device remains in Active mode independently of the status of input pins and **OUT. OUTn** bits. An undervoltage condition on *V*_{DD} supply brings the device into Idle mode, if all input pins are set to "low". Even if the registers MAPINO and [MAPIN1](#page-68-1) are both set to "00_H" but one of the input pins INn is set to "high", the device goes into Active mode.

6.1.5 Limp Home mode

TLE75602-ESH enters Limp Home mode when IDLE pin is "low" and one of the input pins is set to "high", switching ON the channel connected to it. SPI communication is possible but only in read-only mode (SPI registers can be read but cannot be written). More in detail:

- **[UVRVS](#page-65-0)** and **[LOPVDD](#page-65-1)** are set to "1"
- **[MODE](#page-65-2)** bits are set to " 01_B " (Limp Home mode)
- **[TER](#page-68-3)** bit is set to "1" on the first SPI command after entering Limp Home mode. Afterwards it works normally
- **[OLON](#page-65-3)** and **[OLOFF](#page-66-1)** bits is set to "0"
- **[ERRn](#page-66-0)** bits work normally
- **DIAG** OSM. OUTh bits can be read and work normally
- All other registers are set to their default value and cannot be programmed as long as the device is in Limp Home mode

Power Supply

See **[Table 6](#page-20-0)** for a detailed overview of supply voltage conditions required to switch ON channels 2 and 3 during Limp Home. All other channels are OFF.

A transmission of SPI commands during transition from Active to Limp Home mode or Limp Home to Active mode may result in undefined SPI responses.

6.1.6 Definition of Power Supply modes transition times

The channel turn-ON time is as defined by parameter t_{ON} when TLE75602-ESH is in Active mode or in Limp Home mode. In all other cases, it is necessary to add the transition time required to reach one of the two aforementioned Power Supply modes (as shown in **[Figure 14](#page-24-1)**).

Figure 14 Transition Time diagram

6.2 Reset condition

One of the following 3 conditions resets the SPI registers to the default value:

- V_{DD} is not present or below the undervoltage threshold $V_{DD(1)}$
- IDLE pin is set to "low"
- a reset command (**[HWCR.RST](#page-69-1)** set to "1") is executed
	- **[ERRn](#page-66-0)** bits are not cleared by a reset command (for functional safety)
	- **[UVRVS](#page-65-0)** and **[LOPVDD](#page-65-1)** bits are cleared by a reset command

In particular, all channels are switched OFF (if there are no input pin set to "high") and the Input Mapping configuration is reset.

6.2.1 Undervoltage on V_s

Between $V_{S(UV)}$ and $V_{S(OP)}$ the undervoltage mechanism is triggered. If the device is operative and the supply voltage drops below the undervoltage threshold $V_{S(UV)}$, the logic set the bit **[UVRVS](#page-65-0)** to "1". As soon as the supply

Power Supply

voltage VS is above the minimum voltage operative threshold $V_{S(OP)}$, the bit **[UVRVS](#page-65-0)** is set to "0" after the first Standard Diagnosis readout. Undervoltage condition on VS influences the status of the channels, as described in [Table 6](#page-20-0). [Figure 15](#page-25-0) sketches the undervoltage behavior (the " V_S - V_{DS} " line refers to a channel which is programmed to be ON).

Figure 15 *V*_S Undervoltage Behavior

6.2.2 Low Operating Power on V_{DD}

When V_{DD} supply voltage is in the range indicated by $V_{DD(LOP)}$, the bit **[LOPVDD](#page-65-1)** is set to "1". As soon as V_{DD} > *V*_{DD(LOP)} the bit **[LOPVDD](#page-65-1)** is set to "0" after the first Standard Diagnosis readout.

If V_{DD} supply voltage is not present, a voltage applied to pins CSN or SO can supply the internal logic (not recommended in normal operation due to internal design limitations).

Power Supply

6.3 Electrical Characteristics Power Supply

Table 8 Electrical Characteristics Power Supply

 V_{DD} = 3 V to 5.5 V, V_s = 7 V to 18 V, T_1 = -40 °C to +150 °C, all voltages with respect to ground, positive currents flowing as described in **[Figure 3](#page-5-1)** (unless otherwise specified)

Typical values: *V*DD = 5 V, *V*S = 13.5 V, *T*J = 25 °C

Power Supply

Table 8 Electrical Characteristics Power Supply (cont'd)

 V_{DD} = 3 V to 5.5 V, V_s = 7 V to 18 V, T_J = -40 °C to +150 °C, all voltages with respect to ground, positive currents flowing as described in **Figure 3** (unless otherwise specified) Typical values: $V_{\text{DD}} = 5$ V, $V_{\text{S}} = 13.5$ V, $T_{\text{I}} = 25$ °C

Power Supply

Table 8 Electrical Characteristics Power Supply (cont'd)

 V_{DD} = 3 V to 5.5 V, V_s = 7 V to 18 V, T_J = -40 °C to +150 °C, all voltages with respect to ground, positive currents flowing as described in **Figure 3** (unless otherwise specified)

Typical values: $V_{\text{DD}} = 5$ V, $V_{\text{S}} = 13.5$ V, $T_{\text{I}} = 25$ °C

Power Supply

Table 8 Electrical Characteristics Power Supply (cont'd)

 V_{DD} = 3 V to 5.5 V, V_s = 7 V to 18 V, T_J = -40 °C to +150 °C, all voltages with respect to ground, positive currents flowing as described in **Figure 3** (unless otherwise specified) Typical values: $V_{\text{DD}} = 5$ V, $V_{\text{S}} = 13.5$ V, $T_1 = 25$ °C

Power Supply

Table 8 Electrical Characteristics Power Supply (cont'd)

 V_{DD} = 3 V to 5.5 V, V_s = 7 V to 18 V, T_J = -40 °C to +150 °C, all voltages with respect to ground, positive currents flowing as described in **Figure 3** (unless otherwise specified) Typical values: $V_{\text{DD}} = 5$ V, $V_{\text{S}} = 13.5$ V, $T_1 = 25$ °C

Timings

Power Supply

Table 8 Electrical Characteristics Power Supply (cont'd)

 V_{DD} = 3 V to 5.5 V, V_s = 7 V to 18 V, T_J = -40 °C to +150 °C, all voltages with respect to ground, positive currents flowing as described in **Figure 3** (unless otherwise specified) Typical values: $V_{DD} = 5$ V, $V_S = 13.5$ V, $T_J = 25$ °C

Power Supply

Table 8 Electrical Characteristics Power Supply (cont'd)

 V_{DD} = 3 V to 5.5 V, V_s = 7 V to 18 V, T_s = -40 °C to +150 °C, all voltages with respect to ground, positive currents flowing as described in **Figure 3** (unless otherwise specified) Typical values: $V_{\text{DD}} = 5$ V, $V_{\text{S}} = 13.5$ V, $T_1 = 25$ °C

1) Not subject to production test - specified by design

Power Stages

7 Power Stages

The TLE75602-ESH is an eight channels low-side and high-side relay switch. The power stages are built by Nchannel lateral power MOSFET transistors.

There are six auto-configurable channels which can be used either as low-side or as high-side switches. They adjust the diagnostic and protective functions according their potential at drain and source automatically. For these channels a charge pump is connected to the output MOSFET gate.

In high-side configuration, the load is connected between ground and source of the power transistor (pins OUTn_S, n = 2...7). The drains of the power transistors (OUTn_D, with "n" equal to the configurable channel number) can be connected to any potential between ground and *V*_S. When the drain is connected to *V*_S, the channel behave like an high-side switch.

In low-side configuration, the source of the power transistors must be connected to GND pin potential (either directly or through a reverse current blocking diode).

The configuration can be chosen for each of these channels individually, therefore it is feasible to connect one or more channels in low-side configuration, while the remaining auto-configurable are used as high-side switches.

7.1 Output ON-state resistance

The ON-state resistance $R_{DS(OM)}$ depends on the supply voltage as well as the junction temperature T_1 .

7.1.1 Switching Resistive Loads

When switching resistive loads the following switching times and slew rates can be considered.

Figure 16 Switching a Resistive Load

7.1.2 Inductive Output Clamp

When switching off inductive loads, the voltage across the power switch rises to *V*_{DS(CL)} potential, because the inductance intends to continue driving the current. The potential at Output pin is not allowed to go below $V_{\text{OUT--S(CL)}}$ The voltage clamping is necessary to prevent device destruction.

Power Stages

[Figure 17](#page-34-0), **[Figure 18](#page-34-1)** show a concept drawing of the implementation. Nevertheless, the maximum allowed load inductance is limited. The clamping structure protects the device in all operative modes (Sleep, Idle, Active, Limp Home).

Figure 17 Output Clamp concept

Figure 18 Output Clamp concept

Power Stages

7.1.3 Maximum Load Inductance

During demagnetization of inductive loads, energy has to be dissipated in the TLE75602-ESH. **[Equation \(7.1\)](#page-35-0)** shows how to calculate the energy for low-side switches, while **[Equation \(7.2\)](#page-35-1)** can be used for high-side switches (auto-configurable switches can use all equations, depending on the load position):

$$
E = V_{DS(CL)} \cdot \left[\frac{V_S - V_{DS(CL)}}{R_L} \cdot \ln\left(1 - \frac{R_L \cdot I_L}{V_S - V_{DS(CL)}}\right) + I_L \right] \cdot \frac{L}{R_L}
$$
\n(7.1)

$$
E = (V_S - V_{OUTS(CL)}) \cdot \left[\frac{V_{OUTS(CL)}}{R_L} \cdot \ln\left(1 - \frac{R_L \cdot I_L}{V_{OUTS(CL)}}\right) + I_L \right] \cdot \frac{L}{R_L}
$$
(7.2)

The maximum energy, which is converted into heat, is limited by the thermal design of the component. The *E*AR value provided in **[Table 2](#page-9-15)** assumes that all channels can dissipate the same energy when the inductances connected to the outputs are demagnetized at the same time.

7.2 Inverse Current Behavior

During inverse current ($V_{OUTn, S} > V_{OUTn, D}$) in high-side configuration the affected channels stays in ON- or in OFF- state. Furthermore, during applied inverse currents the **[ERRn](#page-66-0)** bit can be set if the channel is in ON-state and the over temperature threshold is reached.

The general functionality (switch ON and OFF, protection, diagnostic) of unaffected channels is not influenced by inverse currents applied to other channels. Parameter deviations are possible especially for the following ones (Over Temperature protection is not influenced):

- Switching capability: t_{ON} , t_{OFF} , dV/dt_{ON} , $-dV/dt_{OFF}$
- Protection: *I*_{L(OVL0)}, *I*_{L(OVL1)}
- Diagnostic: $V_{\mathsf{DS}(\mathsf{OL})}$, $V_{\mathsf{OUT_S}(\mathsf{OL})}$, $I_{\mathsf{L}(\mathsf{OL})}$

Reliability in Limp Home condition for the unaffected channels is unchanged.

Note: No protection mechanism like temperature protection or over load protection is active during applied inverse currents. Inverse currents cause power losses inside the DMOS, which increase the overall device temperature. This could lead to a switch OFF of unaffected channels due to Over Temperature

7.3 Switching Channels in parallel

In case of appearance of a short circuit with channels in parallel, it may happen that the two channels switch OFF asynchronously, therefore bringing an additional thermal stress to the channel that switches OFF last. In order to avoid this condition, it is possible to parametrize in the SPI registers the parallel operation of two neighbour channels (bits **HWCR, PAR**). When operating in this mode, the fastest channel to react to an Over Load or Over Temperature condition will deactivate also the other. The inductive energy that two channels can handle once set in parallel is lower than twice the single channel energy (see [P_7.6.11](#page-39-0)). It is possible to synchronize the following couples of channels:

- channel 0 and channel $2 \rightarrow HWCR$. PAR (0) set to "1"
- channel 1 and channel $3 \rightarrow HWCR$. PAR (1) set to "1"
- channel 4 and channel $6 \rightarrow HWCR$. PAR (2) set to "1"
- channel 5 and channel $7 \rightarrow HWCR$. PAR (3) set to "1"

Power Stages

The synchronization bits influence only how the channels react to Over Load or Over Temperature conditions. Synchronized channels have to be switched ON and OFF individually by the micro-controller.

7.4 "Bulb Inrush Mode" (BIM)

Although TLE75602-ESH is optimized for relays and LED, it may be necessary to use one or more of the outputs as high-side switches to drive small lamps (typically 2 W) or electronic loads with a big input capacitor. In such operative conditions, at the switch ON an inrush current may appear, reaching the overload current threshold which latches the channel OFF (see **[Chapter 8.1](#page-44-0)** for further details). In normal operation the device waits until the microcontroller sends an SPI command to clear the latches (register **[HWCR_OCL](#page-69-0)**) allowing the channel to turn ON again. Usually this delay is too long to transfer enough energy to the load.

If the corresponding bit **[BIM.OUTn](#page-67-0)** is set to "1", in case the channel reaches the overload current threshold or the overtemperature threshold and latches OFF, it restarts automatically after a time t_{INRUSH} , allowing the load to go out of the inrush phase. A time diagram is shown in **[Figure 19](#page-36-0)**. As shown, the counter starts when the channel is switched ON. Every channel switch OFF (independently from the entity controlling the channel - see **[Figure 20](#page-38-0)** for further details) resets the bit **[BIM.OUTn](#page-67-0)** to "0".

While **[BIM.OUTn](#page-67-0)** bits are set to "1", **[ERRn](#page-66-0)** bits may be also set to "1" but this doesn't latch the channel OFF.

An internal timer set the bit $\overline{BIM.OUTn}$ $\overline{BIM.OUTn}$ $\overline{BIM.OUTn}$ back to "0" after 40 ms (parameter t_{BIM}) to prevent an excessive thermal stress to the channel, especially in case of short circuit at the output.

TLE75602-ESH allows a per-channel selection of Bulb Inrush Mode (BIM) in order to be fully flexible without any additional reliability risk.

Figure 19 Bulb Inrush Mode (BIM) operation

7.5 Automatic PWM Generator

The TLE75602-ESH has two independent automatic PWM generator implemented. Each PWM generator can be assigned to one or more channels, and can be programmed with a different duty cycle and frequency.

Both PWM generator refer to a base frequency f_{INT} generated by an internal oscillator. This base frequency can be adjusted using **[HWCR_PWM.ADJ](#page-70-0)** bits as described in **[Table 9](#page-37-0)**.

Power Stages

For each PWM generator 4 parameters can be set:

- duty cycle (bits **[PWM_CR0.DC](#page-70-1)** for PWM Generator 0)
	- 8 bits are available to achieve 0.39% duty cycle resolution
	- when the micro-controller programs a new duty cycle, the PWM generator waits until the previous cycle is completed before using the new duty cycle (this happens also when the duty cycle is either 0% or 100% - the new duty cycle is taken with the next PWM cycle)
	- the maximum duty cycle achievable is 99.61% (**PWM_CRO.DC** set to "11111111_B"). It is possible to achieve 100% by setting **PWM** CRO. FREQ to "11_B"
- frequency (bits **[PWM_CR0.FREQ](#page-70-2)** for PWM Generator 0)
	- with 2 bits is possible to select the divider for f_{INT} to achieve the needed duty cycle
	- $-$ 00_B = f_{INT} / 1024 (when f_{INT} = 102.4 kHz the corresponding PWM frequency is 100 Hz)
	- $-$ 01_B = f_{INT} / 512 (corresponding to 200 Hz)
	- $-10_B = f_{INT}$ / 256 (corresponding to 400 Hz)
- channel output control and mapping registers **[PWM_OUT](#page-71-0)** and **[PWM_MAP](#page-71-1)**)
	- any channel can be mapped to each PWM Generator
	- together with 2 parallel input it is possible to have 4 independent PWM groups of channels with low effort from the point of view of micro-controller resources and SPI data traffic

[Figure 20](#page-38-0) expands the concept shown in **[Figure 10](#page-15-0)** adding the PWM Generators.

Power Stages

Figure 20 PWM Generator Mappings

Power Stages

7.6 Electrical Characteristics Power Stages

Table 10 Electrical Characteristics: Power Stage

 V_{DD} = 3 V to 5.5 V, V_s = 7 V to 18 V, T_J = -40 °C to +150 °C (unless otherwise specified) Typical values: $V_{DD} = 5$ V, $V_s = 13.5$ V, $T_J = 25$ °C

Power Stages

Table 10 Electrical Characteristics: Power Stage (cont'd)

 V_{DD} = 3 V to 5.5 V, V_s = 7 V to 18 V, T_J = -40 °C to +150 °C (unless otherwise specified) Typical values: $V_{DD} = 5$ V, $V_S = 13.5$ V, $T_J = 25$ °C

Timings

Power Stages

Table 10 Electrical Characteristics: Power Stage (cont'd)

 V_{DD} = 3 V to 5.5 V, V_s = 7 V to 18 V, T_J = -40 °C to +150 °C (unless otherwise specified) Typical values: $V_{DD} = 5$ V, $V_S = 13.5$ V, $T_J = 25$ °C

Power Stages

Table 10 Electrical Characteristics: Power Stage (cont'd)

 V_{DD} = 3 V to 5.5 V, V_s = 7 V to 18 V, T_J = -40 °C to +150 °C (unless otherwise specified) Typical values: $V_{DD} = 5$ V, $V_S = 13.5$ V, $T_J = 25$ °C

 $\overline{}$

Power Stages

Table 10 Electrical Characteristics: Power Stage (cont'd)

 V_{DD} = 3 V to 5.5 V, V_s = 7 V to 18 V, T_J = -40 °C to +150 °C (unless otherwise specified)

Typical values: $V_{DD} = 5$ V, $V_S = 13.5$ V, $T_J = 25$ °C

1) Not subject to production test - specified by design

2) If one channel has /_{L(NOM),max} applied, the remaining channels must be underloaded accordingly so that $T_{\rm J}$ < 150°C

3) *I*_{L(NOM), max} can reach *I*_{L(OVL1)}, min

Protection Functions

8 Protection Functions

8.1 Over Load Protection

The TLE75602-ESH is protected in case of over load or short circuit of the load. There are two over load current thresholds (see **[Figure 21](#page-44-1)**):

- \cdot *I*_{L(OVL0)} between channel switch ON and t_{OVLIN}
- $I_{L(OVI1)}$ after t_{OVI1N}

Every time the channel is switched OFF for a time longer than 2 $*$ t_{SYNC} the over load current threshold is set back to $I_{L(OVL0)}$.

Figure 21 Over Load current thresholds

In case the load current is higher than /_{L(OVL0)} or /_{L(OVL1)}, after time $t_{\sf OFF(OVL)}$ the over loaded channel is switched OFF and the according diagnosis bit **[ERRn](#page-66-0)** is set. The channel can be switched ON after clearing the protection latch by setting the corresponding **HWCR** OCL. OUTn bit to "1". This bit is set back to "0" internally after delatching the channel. Please refer to **[Figure 22](#page-44-2)** for details.

Figure 22 Latch OFF at Over Load

8.2 Over Temperature Protection

A temperature sensor is integrated for each channel, causing an overheated channel to switch OFF to prevent destruction. The according diagnosis bit **[ERRn](#page-66-0)** is set (combined with Over Load protection). The channel can

Protection Functions

be switched ON after clearing the protection latch by setting the corresponding **HWCR_OCL. OUTn** bit to "1". This bit is set back to "0" internally after de-latching the channel.

8.3 Over Temperature and Over Load Protection in Limp Home mode

When TLE75602-ESH is in Limp Home mode, channels 2 and 3 can be switched ON using the input pins. In case of Over Load, Short Circuit or Over Temperature the channels switch OFF. If the input pins remain "high", the channels restart with the following timings:

- 10 ms (first 8 retries)
- 20 ms (following 8 retries)
- 40 ms (following 8 retries)
- 80 ms (as long as the input pin remains "high" and the error is still present)

If at any time the input pin is set to "low" for longer than $2*t_{\text{cyc}}$, the restart timer is reset. At the next channel activation while in Limp Home mode the timer starts from 10 ms again. See **[Figure 23](#page-45-0)** for details. Over Load current thresholds behave as described in **[Chapter 8.1](#page-44-3)**.

Figure 23 Restart timer in Limp Home mode

8.4 Reverse Polarity Protection

In Reverse Polarity (also known as Reverse Battery) condition, power dissipation is caused by the intrinsic body diode of each DMOS channel (for Low-Side channels and for auto-configurable channels used as Low-Side switches), while auto-configurable channels used as High-Side switches have Reversave™ functionality. Each ESD diode of the logic and supply pins contributes to total power dissipation. Channels with Reversave™ functionality are switched ON almost with the same $R_{DS(ON)}$ (see parameter $R_{DS(REV)}$). The reverse current through the channels has to be limited by the connected loads. The current through digital power supply V_{DD} and input pins has to be limited as well (please refer to the Absolute Maximum Ratings listed on **[Chapter 4.1](#page-9-0)**).

Note: No protection mechanism like temperature protection or current limitation is active during reverse polarity.

8.5 Over Voltage Protection

In the case of supply voltages between $V_{S(SC)}$ and $V_{S(LD)}$ the output transistors are still operational and follow the input pins or the **[OUT](#page-67-2)** register.

In addition to the output clamp for inductive loads as described in **[Chapter 7.1.2](#page-33-0)**, there is a clamp mechanism available for over voltage protection for the logic and all channels, monitoring the voltage between VS and GND pins ($V_{S(AZ)}$).

Protection Functions

8.6 Electrical Characteristics Protection

Table 11 Electrical Characteristics Protection

 V_{DD} = 3 V to 5.5 V, V_{S} = 7 V to 18 V, T_{J} = -40 °C to +150 °C (unless otherwise specified) Typical values: $V_{\text{DD}} = 5 \text{ V}$, $V_{\text{S}} = 13.5 \text{ V}$, $T_{\text{J}} = 25 \text{ °C}$

Protection Functions

Table 11 Electrical Characteristics Protection (cont'd)

 V_{DD} = 3 V to 5.5 V, V_s = 7 V to 18 V, T_J = -40 °C to +150 °C (unless otherwise specified)

Typical values: $V_{DD} = 5$ V, $V_S = 13.5$ V, $T_J = 25$ °C

1) Not subject to production test - specified by design

Diagnosis

9 Diagnosis

The SPI of TLE75602-ESH provides diagnosis information about the device and the load status. Each channel diagnosis information is independent from other channels. An error condition on one channel has no influence on the diagnostic of other channels in the device (unless configured to work in parallel, see **[Chapter 7.3](#page-35-0)** for more details).

9.1 Over Load and Over Temperature

When either an Over Load or an Over Temperature occurs on one channel, the diagnosis bit **[ERRn](#page-66-0)** is set accordingly. As described in **[Chapter 8.1](#page-44-0)** and **[Chapter 8.2](#page-44-4)**, the channel latches OFF and must be reactivated setting corresponding **HWCR** OCL. OUTn bit to "1".

9.2 Output Status Monitor

The device compares each channel *V*_{DS} with *V*_{DS(OL)} (Low-Side channels and auto-configurable channels used as Low-Side switches), $V_{\text{OUT_S}}$ with $V_{\text{OUT_S(OL)}}$ (auto-configurable channels used as High-Side)and sets the corresponding **[DIAG_OSM.OUTn](#page-68-0)** bits accordingly. The bits are updated every time **[DIAG_OSM](#page-68-1)** register is read.

- V_{DS} < $V_{DS(OL)}$ \rightarrow **DIAG_OSM. OUTn** = "1" (Low-Side channels and auto-configurable channels as Low-Side)
- $V_{\text{OUT S}} > V_{\text{OUT SOL}}$ \rightarrow **DIAG_OSM. OUTn** = "1" (auto-configurable channels as High-Side)

A diagnosis current *I*_{OL} in parallel to the power switch can be enabled by programming the DIAG IOL. OUTn bit, which can be used for Open Load at OFF detection. Each channel has its dedicated diagnosis current source. If the diagnosis current *I*_{OL} is enabled or if the channel changes state (ON → OFF or OFF → ON) it is necessary to wait a time t_{OSM} for a reliable diagnosis. Enabling I_{OL} current sources increases the current consumption of the device. Even if an Open Load is detected, the channel is not latched OFF.

See **[Figure 24](#page-48-0)** for a timing overview (the values of **DIAG** IOL. OUTn refer to a channel in normal operation properly connected to the load).

Figure 24 Output Status Monitor timing

Output Status Monitor diagnostic is available when $V_S = V_{S(NOR)}$ and $V_{DD} \geq V_{DD(1)}$.

Diagnosis

Due to the fact that Output Status Monitor checks the voltage level at the outputs in real time, for Open Load in OFF diagnostic it is necessary to synchronize the reading of **[DIAG_OSM](#page-68-1)** register with the OFF state of the channels.

[Figure 25](#page-49-0), **[Figure 26](#page-49-1)** and **[Figure 27](#page-50-0)** shows how Output Status Monitor is implemented at concept level.

Figure 25 Output Status Monitor - concept (Low-Side channels)

Figure 26 Output Status Monitor - concept (auto-configurable channel as High-Side)

Diagnosis

Figure 27 Output Status Monitor - concept (Auto-configurable channel as Low-Side)

In Standard Diagnosis the bit **[OLOFF](#page-66-1)** represents the OR combination of all **[DIAG_OSM.OUTn](#page-68-0)** bits for all channels in OFF state which have the corresponding current source *I*_{OL} activated.

9.3 Open Load at ON

Each auto-configurable channel (when used as high-side switch) channel has the possibility of Open Load at ON diagnosis, which can be controlled programming **DIAG** OLONEN. MUX bits. By default after a reset Open Load at ON diagnosis is not active. The device compares I_{L_Sn} with $I_{L(OL)}$ and sets the [DIAG_OLON.OUTn](#page-68-3) accordingly:

• I_L _{Sn} < $I_{L(OL)}$ \rightarrow **DIAG_OLON.** OUTn = "1" if V_{OUTR} s > $V_{OUTS(OL)}$

9.3.1 Open Load at ON - direct channel diagnosis

When **DIAG** OLONEN. MUX bits are programmed with a value corresponding to a channel (0010_B \rightarrow 0111_B), the internal multiplexer checks for Open Load at ON condition on the selected channel. It is recommended that the channel is ON for at least t_{ON} before activating the diagnosis. After a time $t_{OLONSET}$ the corresponding **[DIAG_OLON.OUTn](#page-68-3)** bit for the selected channel is available. All the other bits in the **[DIAG_OLON](#page-68-4)** register are set to default (40 _B"). The bits are updated every time the register is read.

When a channel is selected, the corresponding **DIAG** OLON. OUTn bit content is mirrored also in the Standard Diagnosis (bit **[OLON](#page-65-0)**). In case of several register readouts in sequence the register content is updated at every read request from micro-controller. See **[Figure 28](#page-51-0)** for further details.

Diagnosis

Figure 28 Open Load at ON timings (direct channels diagnosis)

9.3.2 Open Load at ON - diagnosis loop

When **DIAG** OLONEN. MUX bits are programmed with the value 1010_B, the device starts a diagnosis loop where all auto-configurable (when used as high-side switches) channels are checked for Open Load at ON. The internal multiplexer is controlled by the internal logic, therefore there is no need for the micro-controller to send any additional command.

First the internal logic checks all channels which are directly driven by the micro-controller and not configured to be driven by the internal PWM generator, then the internal logic checks all channels which are configured to be driven by the internal PWM generator.

- Diagnosis sequence for channels driven directly by the micro-controller
	- $-$ First channel checked: channel 2. It is recommended that the channels are ON at least t_{ON} before activating the diagnosis loop.
	- $-$ After a time $t_{\text{OLONSET}} + t_{\text{SYNC}}$ the diagnosis for the first channel is completed (DIAG OLON. OUTn bit is updated)
	- $-$ The internal multiplexer is set to the next channel. After a time $t_{\text{OLONSW}} + t_{\text{SYNC}}$ the diagnosis is completed (**[DIAG_OLON.OUTn](#page-68-3)** bit is updated) for the currently selected channel. This step is repeated for all remaining directly driven channels.
	- If one channel is OFF when the diagnosis is performed, the corresponding **[DIAG_OLON.OUTn](#page-68-3)** is set to $"0_{\rm B}"$
- Diagnosis sequence for channels driven by the internal PWM Generators (see **[Chapter 7.5](#page-36-1)**)
	- These channels are diagnosed only after all channels directly driven by micro-controller are checked
	- Channels mapped to PWM Generator 0 are diagnosed first
	- After a time t_{oLONSET} the channel activation (switch ON) is the trigger event to perform Open Load at ON diagnosis for the first channel
	- After a time $t_{OMMAX} + t_{OLONSW}$ the diagnosis for the first channel is completed (**DIAG_OLON. OUTn** bit is updated)

Diagnosis

 $-$ The internal multiplexer is set to the next channel. After a time t_{OLONSW} the diagnosis is completed (**[DIAG_OLON.OUTn](#page-68-3)** bit is updated) for the currently selected channel. This step is repeated for all remaining PWM generator driven channels.

If the channel is in OFF state during the PWM period, the internal logic waits for the ON state to perform the diagnosis. After a time $t_{OMMAX} + t_{OLONSW}$ the diagnosis for that channel is completed.

 $-$ The minimum ON time for a reliable diagnosis is $> t_{\text{ONMAX}} + t_{\text{OLONSW}}$. If the ON time is $< t_{\text{ONMAX}} + t_{\text{OLONSW}}$ the corresponding **DIAG** OLON. OUT_n is set to "0_B".

When the loop finishes, [DIAG_OLONEN.MUX](#page-69-3) bits are set back to 1111_B (default value) and **DIAG** OLON. OUTn bits store the last diagnosis loop result. It is necessary to start another diagnosis loop to update the register content.

[Figure 29](#page-52-0) shows the timing in case of channels driven directly by micro-controller, while **[Figure 30](#page-53-0)** represents the case with channels driven by internal PWM Generators.

Figure 29 Open Load at ON timings (diagnosis loop - channels driven by micro-controller directly)

Diagnosis

Figure 30 Open Load at ON timings (diagnosis loop - channels driven by internal PWM Generators

9.3.3 [OLON](#page-65-0) bit

The **[OLON](#page-65-0)** bit can assume the following values:

- "0" = no Open Load at ON state detected, or the channel is OFF when the diagnosis is performed
- "1" = Open Load at ON state detected

According to the setting of **DIAG** OLONEN. MUX different information are reported in the Standard Diagnosis.

- **DIAG** [OLON](#page-65-0)EN. MUX set to $0010_B \rightarrow 0111_B$: The OLON bit shows the Open Load at ON state diagnosis performed on the selected channel. The information is updated at every Standard Diagnosis readout.
- **DIAG** [OLON](#page-65-0)EN. MUX set to 1010_B: the OLON bit shows the "OR" combination of all bits in **[DIAG_OLON](#page-68-4)** register. The information is updated while the diagnosis loop is running.
- **DIAG** [OLON](#page-65-0)EN. MUX set to 1111_B: the OLON bit shows the result of the latest diagnosis loop performed. It is necessary to start another diagnosis loop to update the information.
- **DIAG [OLON](#page-65-0)EN. MUX** set to any other value: The **OLON** bit is set to "0". These values of **DIAG** OLONEN. MUX bits are reserved and should not be used in the application.

Diagnosis

9.4 Electrical Characteristics Diagnosis

Table 12 Electrical Characteristics Diagnosis

 V_{DD} = 3 V to 5.5 V, V_s = 7 V to 18 V, T_J = -40 °C to +150 °C (unless otherwise specified) Typical values: $V_{DD} = 5$ V, $V_S = 13.5$ V, $T_J = 25$ °C

Diagnosis

Table 12 Electrical Characteristics Diagnosis (cont'd)

 V_{DD} = 3 V to 5.5 V, V_s = 7 V to 18 V, T_J = -40 °C to +150 °C (unless otherwise specified)

Typical values: $V_{DD} = 5$ V, $V_S = 13.5$ V, $T_J = 25$ °C

1) Not subject to production test - specified by design

2) Output status detection voltages are referenced to ground (GND pin)

10 Serial Peripheral Interface (SPI)

The serial peripheral interface (SPI) is a full duplex synchronous serial slave interface, which uses four lines: SO, SI, SCLK and CSN. Data is transferred by the lines SI and SO at the rate given by SCLK. The falling edge of CSN indicates the beginning of an access. Data is sampled in on line SI at the falling edge of SCLK and shifted out on line SO at the rising edge of SCLK. Each access must be terminated by a rising edge of CSN. A modulo 8/16 counter ensures that data is taken only when a multiple of 8 bit has been transferred after the first 16 bits. Otherwise a TER bit is asserted. In this way the interface provides daisy chain capability with 16 bit as well as with 8 bit SPI devices.

Figure 31 Serial Peripheral Interface

10.1 SPI Signal Description

CSN - Chip Select

The system microcontroller selects the TLE75602-ESH by means of the CSN pin. Whenever the pin is in "low" state, data transfer can take place. When CSN is in "high" state, any signals at the SCLK and SI pins are ignored and SO is forced into a high impedance state.

CSN "high" to "low" Transition

- The requested information is transferred into the shift register.
- SO changes from high impedance state to "high" or "low" state depending on the logic OR combination between the transmission error flag (TER) and the signal level at pin SI. This allows to detect a faulty transmission even in daisy chain configuration.
- If the device is in Sleep mode, SO pin remains in high impedance state and no SPI transmission occurs.

Figure 32 Combinatorial Logic for TER bit

CSN "low" to "high" Transition

- Command decoding is only done, when after the falling edge of CSN exactly a multiple $(1, 2, 3, ...)$ of eight SCLK signals have been detected after the first 16 SCLK pulses. In case of faulty transmission, the transmission error bit (**[TER](#page-65-1)**) is set and the command is ignored.
- Data from shift register is transferred into the addressed register.

SCLK - Serial Clock

This input pin clocks the internal shift register. The serial input (SI) transfers data into the shift register on the falling edge of SCLK while the serial output (SO) shifts diagnostic information out on the rising edge of the serial clock. It is essential that the SCLK pin is in "low" state whenever chip select CSN makes any transition, otherwise the command may be not accepted.

SI - Serial Input

Serial input data bits are shift-in at this pin, the most significant bit first. SI information is read on the falling edge of SCLK. The input data consists of two parts, control bits followed by data bits. Please refer to **[Chapter 10.5](#page-62-0)** for further information.

SO Serial Output

Data is shifted out serially at this pin, the most significant bit first. SO is in high impedance state until the CSN pin goes to "low" state. New data appears at the SO pin following the rising edge of SCLK.

Please refer to **[Chapter 10.5](#page-62-0)** for further information.

10.2 Daisy Chain Capability

The SPI of TLE75602-ESH provides daisy chain capability. In this configuration several devices are activated by the same CSN signal MCSN. The SI line of one device is connected with the SO line of another device (see **[Figure 33](#page-57-0)**), in order to build a chain. The end of the chain is connected to the output and input of the master device, MO and MI respectively. The master device provides the master clock MCLK which is connected to the SCLK line of each device in the chain.

Figure 33 Daisy Chain Configuration

In the SPI block of each device, there is one shift register where each bit from SI line is shifted in each SCLK. The bit shifted out occurs at the SO pin. After sixteen SCLK cycles, the data transfer for one device is finished.

Serial Peripheral Interface (SPI)

In single chip configuration, the CSN line must turn "high" to make the device acknowledge the transferred data. In daisy chain configuration, the data shifted out at device 1 has been shifted in to device 2. When using three devices in daisy chain, several multiples of 8 bits have to be shifted through the devices (depending on how many devices with 8 bit SPI and how many with 16 bit SPI). After that, the MCSN line must turn "high" (see **[Figure 34](#page-58-0)**).

Figure 34 Data Transfer in Daisy Chain Configuration

10.3 Timing Diagrams

Figure 35 Timing Diagram SPI Access

Serial Peripheral Interface (SPI)

10.4 Electrical Characteristics

 V_{DD} = 3 V to 5.5 V, V_s = 7 V to 18 V, T_J = -40 °C to +150 °C (unless otherwise specified) Typical values: $V_{DD} = 5$ V, $V_S = 13.5$ V, $T_J = 25$ °C

Table 13 Electrical Characteristics Serial Peripheral Interface (SPI)

Table 13 Electrical Characteristics Serial Peripheral Interface (SPI) (cont'd)

1) Not subject to production test, specified by design

10.5 SPI Protocol

The relationship between SI and SO content during SPI communication is shown in **[Figure 36](#page-62-1)**. SI line represents the frame sent from the µC and SO line is the answer provided by TLE75602-ESH.

Figure 36 Relationship between SI and SO during SPI communication

The SPI protocol provides the answer to a command frame only with the next transmission triggered by the µC. Although the biggest majority of commands and frames implemented in TLE75602-ESH can be decoded without the knowledge of what happened before, it is advisable to consider what the µC sent in the previous transmission to decode TLE75602-ESH response frame completely.

More in detail, the sequence of commands to "read" and "write" the content of a register looks as follows:

Figure 37 Register content sent back to µC

There are 3 special situations where the frame sent back to the μ C is not related directly to the previous received frame:

- in case an error in transmission happened during the previous frame (for instance, the clock pulses were not multiple of 8 with a minimum of 16 bits), shown in **[Figure 38](#page-63-0)**
- when TLE75602-ESH logic supply comes out of Power-On reset condition or after a Software Reset, as shown in **[Figure 39](#page-63-1)**
- in case of command syntax errors
	- "write" command starting with "11" instead of "10"
	- "read" command starting with "00" instead of "01"
	- "read" or "write" commands on registers which are "reserved" or "not used"

Figure 38 TLE75602-ESH response after a error in transmission

Figure 39 TLE75602-ESH response after coming out of Power-On reset at V_{DD}

Figure 40 TLE75602-ESH response after a command syntax error

A summary of all possible SPI commands is presented in **[Table 14](#page-64-0)**, including the answer that TLE75602-ESH sends back at the next transmission.

Table 14 SPI Command summary1)

1) "a" = address bits for ADDR0 field, "b" = address bit for ADDR1 field, "c" = register content, "d" = diagnostic bit

10.6 SPI Registers Overview

10.6.1 Standard Diagnosis

Table 15 Standard Diagnosis

Serial Peripheral Interface (SPI)

10.6.2 Register structure

The register banks the digital part have following structure:

Table 16 Register structure - all registers (with the exclusion of [PWM_CR0](#page-70-3) and [PWM_CR1](#page-70-4))

Table 17 Register structure - [PWM_CR0](#page-70-3) and [PWM_CR1](#page-70-4)

[Table 18](#page-67-3) summarizes the available registers with their addresing space and size

Table 18 Register addressing space

Table 18 Register addressing space (cont'd)

Register name	ADDR0	ADDR1	Size	Type	Purpose
HWCR PWM	0011_B	10 _B	8	r/w	PWM Configuration Register
					bits HWCR PWM.ADJ (7:4)
					0000 _B (reserved)
					0001 _B base frequency f_{INT} - 37.2%
					0010 _B base frequency f_{INT} - 31.9%
					0011 _B base frequency f_{INT} - 26.9%
					0100 _B base frequency f_{INT} - 21.0%
					0101 _B base frequency f_{INT} - 15.5%
					0110 _B base frequency f_{INT} - 10.9%
					0111 _B base frequency f_{INT} - 5.8%
					$1000B$ (default) base frequency f_{INT}
					1001_B base frequency f_{INT} + 4.3%
					1010 _B base frequency f_{INT} + 8.9%
					1011_B base frequency f_{INT} + 14.0%
					1100 _B base frequency f_{INT} + 19.5%
					1101 _B base frequency f_{INT} + 25.6%
					1110 _B base frequency f_{INT} + 32.4%
					1111 _B base frequency f_{INT} + 40.0%
					bits HWCR PWM. PWM1 (1)
					(default) PWM Generator 1 not active $0_{\rm R}$
					PWM Generator 1 active 1 _R
					bits HWCR PWM. PWM0 (0)
					(default) PWM Generator 0 not active $0_{\rm B}$
					PWM Generator 0 active $1_{\rm R}$
					bits HWCR PWM.RES (3:2) - reserved
PWM CRO	0100_R		10	r/w	PMW Generator Configuration 0
					bits PWM CRO. FREQ (9:8)
					00 _B (default) internal clock divided by 1024
					$01B$ internal clock divided by 512
					internal clock divided by 256 $10_{\rm B}$
					$11B$ 100% duty cycle
					bits PWM CRO.DC (7:0) (resolution: 0.39%)
					00000000 _B , PWM generator is OFF
					11111111 _B , PWM generator is ON (99.61% duty cycle)
PWM CR1	0101_{B}		10	r/w	PMW Generator Configuration 1
					bits PWM CR1. FREQ (9:8)
					00 _R (default) internal clock divided by 1024
					$01B$ internal clock divided by 512
					$10B$ internal clock divided by 256
					$11B$ 100% duty cycle
					bits PWM CR1.DC (7:0) (resolution: 0.39%)
					00000000 _R , PWM generator is OFF
					11111111 _B , PWM generator is ON (99.61% duty cycle)

Table 18 Register addressing space (cont'd)

Table 18 Register addressing space (cont'd)

10.6.3 Register summary

All registers with addresses not mentioned in **[Table 19](#page-71-3)** and **[Table 20](#page-71-4)** have to be considered as "reserved". "Read" operations performed on those registers return the Standard Diagnosis. The column "Default" indicates the content of the register (8 or 10 bits) after a reset.

Table 19 Addressable registers (basic functions)

Serial Peripheral Interface (SPI)

10.6.4 SPI command quick list

A summary of the most used SPI commands (read and write operations on all registers) is shown in **[Table 21](#page-72-0)**

Table 21 SPI command quick list

Serial Peripheral Interface (SPI)

Table 21 SPI command quick list (cont'd)

TLE75602-ESH SPIDER+ 12V

Application Information

11 Application Information

Figure 41 TLE75602-ESH Application Diagram

Note: This is a very simplified example of an application circuit. The function must be verified in the real application.

Table 22 Suggested Component values

TLE75602-ESH SPIDER+ 12V

Application Information

Table 22 Suggested Component values (cont'd)

11.1 Further Application Information

- Please contact us for information regarding the Pin FMEA
- For further information you may contact **<http://www.infineon.com/>**

Package Outlines

12 Package Outlines

Figure 42 PG-TSDSO-24-21 Package drawing

Figure 43 TLE75602-ESH Package pads and stencil

Package Outlines

Green Product (RoHS compliant)

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).

For further information on alternative packages, please visit our website:
http://www.infineon.com/packages. **http://www.infineon.com/packages**. Dimensions in mm

Cinfineon

Revision History

13 Revision History

Table of Contents

Trademarks of Infineon Technologies AG

µHVIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLiR™, CoolMOS™, CoolSET™, CoolSiC™, DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowIR™, HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OPTIGA™, OptiMOS™, ORIGA™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™, SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™.

Trademarks updated November 2015

Other Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2017-11-23 Published by Infineon Technologies AG 81726 Munich, Germany

© 2017 Infineon Technologies AG. All Rights Reserved.

Do you have a question about any aspect of this document? Email: erratum@infineon.com

Document reference

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (**www.infineon.com**).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

[Infineon](https://www.mouser.com/infineon): [TLE75602ESHXUMA1](https://www.mouser.com/access/?pn=TLE75602ESHXUMA1)