TI01613T/09/EN/01.21

71543230 2021-06-30

Technical Information **iTEMP TMT31**

Temperature transmitter

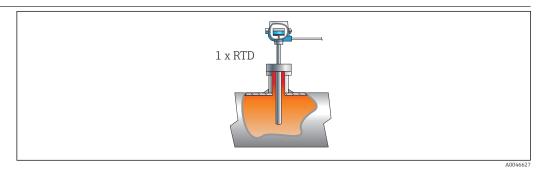
Form B (flat face) head transmitter with 4 to 20 mA analog output

Application

- The iTEMP TMT31 is characterized by its reliability, long-term stability, high precision and diagnostic functions.
- For maximum safety and availability
- Installation in terminal head B

Your benefits

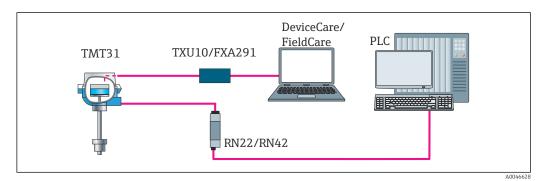
- Diagnostics information according to NAMUR NE107Rapid no-tools wiring due to optional spring terminal
- Rapid no-tools wining due to optional spring terminal technology
- Increased safety with Ex approvals
- High accuracy and flexibility with Callendar-van-Dusen equation


Table of contents

Function and system design Measuring system Output simulation	3 3 3
Input	
Output . Output signal	4 4 4 4 4 4
Power supply	4 4 5 5
Performance characteristics	5 5 5 6 6 6
Mounting	7 7
Environment	7 7 7 7
Mechanical construction	8 8 8
Operability	9 9 9
Certificates and approvals	9 9

Ordering information
Accessories9Device-specific accessories9Communication-specific accessories10Service-specific accessories10System components11
Documentation 11

Function and system design


Measuring system

■ 1 Installed head transmitter - 1 x RTD wired directly

Endress+Hauser offers a comprehensive range of industrial thermometers with resistance sensors. When combined with the temperature transmitter, these components form a complete measuring point for a wide range of applications in the industrial sector.

The temperature transmitter is a 2-wire device with one measuring input and one analog output. It can be used for instrumentation in a Form B (flat face) terminal head as per DIN EN 50446.

2 Device architecture for PC-programmable transmitter

Standard diagnostic functions

- Cable open-circuit, short-circuit of sensor wires
- Incorrect wiring
- Internal device errors
- Overrange and underrange detection
- Device temperature overrange/underrange detection
- Low voltage detection

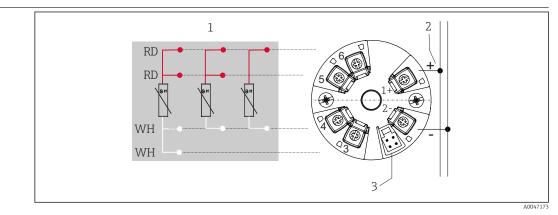
Output simulation

Simulation of the 4 to 20 mA output signal

Input

Measured variable

Temperature (temperature-linear transmission behavior)


Resistance thermometer (RTD) as per standard	Designation	α	Measuring range limits	Min. span
IEC 60751:2008	Pt100 (1) Pt1000 (4)	0.003851	-200 to +850 ℃ (-328 to +1562 ℉) -200 to +250 ℃ (-328 to +482 ℉)	10 K (18 °F)
JIS C1604:1984	Pt100 (5)	0.003916	−200 to +510 °C (−328 to +950 °F)	10 K (18 °F)

Resistance thermometer (RTD) as per standard	Designation	α	Measuring range limits	Min. span
GOST 6651-94	Pt100 (9)	0.003910	-200 to +850 °C (-328 to +1562 °F)	10 K (18 °F)
-	Pt100 (Callendar van Dusen)	-	The measuring range limits are specified by entering the limit values that depend on the coefficients A to C and RO.	10 K (18 °F)
	 Type of connection: 2-wire, 3-wire or 4-wire connection, sensor current: ≤ 0.3 mA With 2-wire circuit, compensation of wire resistance possible (0 to 30 Ω) With 3-wire and 4-wire connection, sensor wire resistance up to max. 50 Ω per wire 			

Output

Output signal	Analog output	4 to 20 mA, 20 to 4 mA (can be inverted)		
Failure information	Failure information as per NAMUR NE43			
	Failure information is created if the measuring information is missing or not valid. The error with the highest priority is displayed.			
	Underranging	Linear drop from 4.0 to 3.8 mA		
	Overranging	Linear increase from 20.0 to 20.5 mA		
	Failure e.g. sensor failure; sensor short-circuit	\leq 3.6 mA ("Low") or \geq 21 mA ("High"), can be selected		
Linearization/transmission behavior	Temperature-linear			
Filter	1st order digital filter: 0 to 120 s			
	Network frequency filter: 50/60 Hz (cannot	t be adjusted)		
Switch-on delay	\leq 5 s, until the first valid measured value signal is present at the current output. While switch delay = I_a \leq 3.8 mA			
	Power supply			
Supply voltage	Values for non-hazardous areas, protected against polarity reversal: $10 \text{ V} \leq \text{Vcc} \leq 36 \text{ V}$ (standard)			
	Values for hazardous areas, see Ex documer	ntation.		
Current consumption	3.5 to 22.5 mA			

Electrical connection

- 3 Terminal assignment of head transmitter
- 1 RTD sensor input: 4-, 3- and 2-wire
- 2 Power supply
- 3 CDI interface

Terminal

Choice of screw or push-in terminals for sensor and power supply cables:

Terminal design	Cable design	Cable cross-section
Screw terminals	Rigid or flexible	$\leq 1.5 \text{ mm}^2$ (16 AWG)
Spring terminals ¹⁾ (Cable design,	Rigid or flexible	0.2 to 1.5 mm ² (24 to 16 AWG)
stripping length = min. 10 mm (0.39 in)	Flexible with wire end ferrules with/without plastic ferrule	0.25 to 1.5 mm² (24 to 16 AWG)

1) Wire end ferrules must be used with spring terminals and when using flexible cables with a cable cross-section of $\leq 0.3 \text{ mm}^2$.

Performance characteristics

Response time	≤ 0.5 s
Reference operating conditions	 Calibration temperature: +25 °C ±3 K (77 °F ±5.4 °F) Supply voltage: 24 V DC 4-wire circuit for resistance adjustment
Maximum measured error	In accordance with DIN EN 60770 and the reference conditions specified above. The measured error data correspond to $\pm 2 \sigma$ (Gaussian distribution). The data include non-linearities and repeatability.
	MV = measured value
	LRV = lower range value of sensor

Transmitter measured error

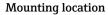
Version	Measured error (±)
In entire measuring range	0.15 K or 0.07 % of span $^{1)}$
Increased accuracy in limited measuring range, –50 to +250 °C (–58 to +482 °F)	0.1 K or 0.07 % of span ¹⁾

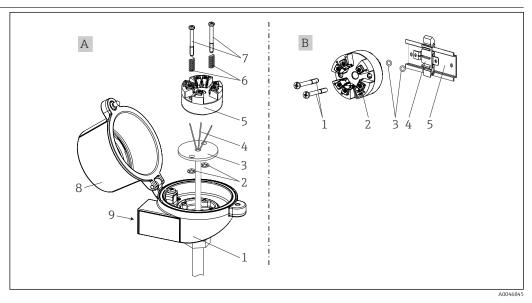
1) whichever is higher

The measured error data correspond to 2 σ (Gaussian distribution)

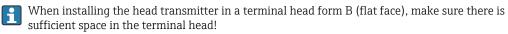
Operating influences The measured error data correspond to 2 σ (Gaussian distribution).

Designation	Standard	Ambient temperature: Influence (±) per 1 °C (1.8 °F) change		Supply voltage: Influence (±) per V change	
		0 to +200 °C (+32 to +392 °F)	Entire measuring range	0 to +200 °C (+32 to +392 °F)	Entire measuring range
Pt100 (1)	- IEC 60751:2008	0.02 °C (0.04 °F)	0.04 °C (0.07 °F)	0.01 °C (0.014 °F)	0.02 °C (0.04 °F)
Pt1000 (4)		0.01 °C (0.02 °F)	0.02 °C (0.03 °F)	0.01 °C (0.009 °F)	0.01 °C (0.02 °F)
Pt100 (5)	JIS C1604:1984	0.01 °C (0.03 °F)	0.03 °C (0.05 °F)	0.01 °C (0.011 °F)	0.02 °C (0.03 °F)
Pt100 (9)	GOST 6651-94	0.02 °C (0.04 °F)	0.04 °C (0.07 °F)	0.01 °C (0.014 °F)	0.02 °C (0.04 °F)


Operating influences: ambient temperature and supply voltage for resistance temperature detector (RTD)


Long-term drift (±) ¹⁾		
after 1 year after 3 years after 5 years		
Based on measured value		
0.05 K or 0.03 % of span	0.06 K or 0.04 % of span	0.07 K or 0.05 % of span

1) whichever is higher


	Calculation of the maximum measured error of the analog value (current output): $\sqrt{(\text{Measured error}^2 + \text{Influence of ambient temperature}^2 + \text{Influence of supply voltage}^2)}$
Sensor adjustment	Sensor-transmitter-matching
	To significantly improve the temperature measurement accuracy of RTD sensors, the device enables the following method:
	Callendar-Van-Dusen coefficients (Pt100 RTD assembly) The Callendar-Van-Dusen equation is described as: $R_T = R_0[1+AT+BT^2+C(T-100)T^3]$
	The coefficients A, B and C are used to match the sensor (platinum) and transmitter in order to improve the accuracy of the measuring system. The coefficients for a standard sensor are specified in IEC 751. If no standard sensor is available or if greater accuracy is required, the coefficients for each sensor can be determined specifically with the aid of sensor calibration.
	Sensor-transmitter-matching using the method explained above significantly improves the temperature measurement accuracy of the entire system. This is because the transmitter uses the specific data pertaining to the connected sensor to calculate the measured temperature, instead of using the standardized sensor curve data.
	1-point adjustment (offset)
	Shifts the sensor value
Current output adjustment	Correction of the 4 and/or 20 mA current output value.

Mounting

- A Terminal head Form B (flat face) as per DIN EN 50446, direct installation on insert with cable entry (middle hole 7 mm (0.28 in))
- *B* With DIN rail clip on DIN rail as per IEC 60715 (TH35)

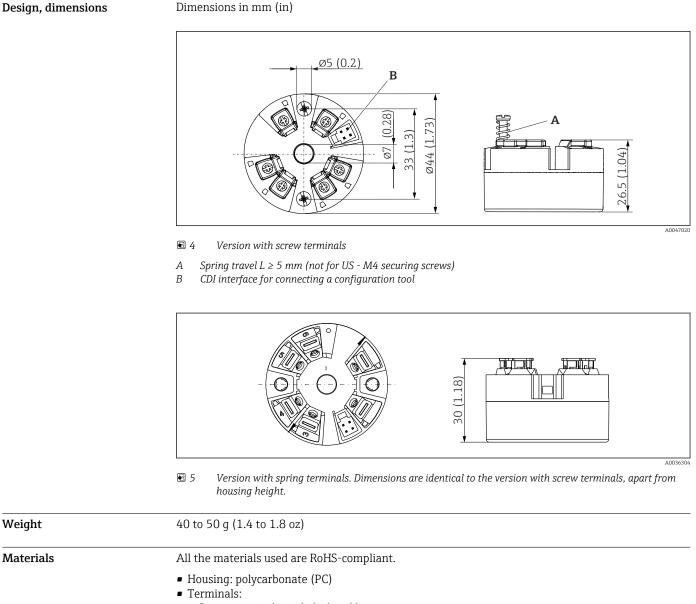
Environment

Ambient temperature	-40 to +85 °C (-40 to +185 °F),
Storage temperature	–50 to +100 °C (–58 to +212 °F)
Operating altitude	Up to 4000 m (4374.5 yards) above sea level.
Humidity	 Condensation: Permitted Max. rel. humidity: 95 % as per IEC 60068-2-30
Climate class	Climate class C1 according to IEC 60654-1
Degree of protection	With screw terminals: IP 00, with spring terminals: IP 30. In the installed state, it depends on the terminal head or housing used for field mounting.
Shock and vibration resistance	Vibration resistance as per DNVGL-CG-0339 : 2015 and DIN EN 60068-2-27 8.6 to 150 Hz at 3g
	Shock resistance as per KTA 3505 (section 5.8.4 Shock test)
Electromagnetic	CE conformity
compatibility (EMC)	Electromagnetic compatibility in accordance with all the relevant requirements of the IEC/EN 61326 series and NAMUR Recommendation EMC (NE21). For details, refer to the Declaration of Conformity.
	Maximum measured error $<1\%$ of measuring range.
	Interference immunity as per IEC/EN 61326 series, industrial requirements

 Interference emission as per IEC/EN 61326 series (CISPR 11), Class B, group 1 equipment

 Measuring category

 Measuring category


 Measuring category

 Interference

 Pollution degree

 Pollution degree

Mechanical construction

- Screw terminals: nickel-plated brass
- Push-in terminals: tin-plated brass, contact springs 1.4310, 301 (AISI)
- Potting compound: SIL gel

Operability

Remote operation	device-specific parameters are configured via the CDI interface (service interface) of the device. There are special configuration tools from different manufacturers available for this purpose. For more information, contact your Endress+Hauser sales representative.
Write protection for device parameters	Software: Write protection using password User role concept (password allocation)

Certificates and approvals

Current certificates and approvals for the product are available via the Product Configurator at www.endress.com.

- 1. Select the product using the filters and search field.
- 2. Open the product page.

The Configuration button opens the Product Configurator.

MTTF

418 years

The mean time to failure (MTTF) denotes the theoretically expected time until the device fails during normal operation. The term MTTF is used for systems that cannot be repaired, e.g. temperature transmitters.

Ordering information

Detailed ordering information is available for your nearest sales organization www.addresses.endress.com or in the Product Configurator under www.endress.com :

1. Click Corporate

- 2. Select the country
- 3. Click Products
- 4. Select the product using the filters and search field
- 5. Open the product page

The Configuration button to the right of the product image opens the Product Configurator.

Product Configurator - the tool for individual product configuration

- Up-to-the-minute configuration data
- Depending on the device: Direct input of measuring point-specific information such as measuring range or operating language
- Automatic verification of exclusion criteria
- Automatic creation of the order code and its breakdown in PDF or Excel output format
- Ability to order directly in the Endress+Hauser Online Shop

Accessories

Various accessories, which can be ordered with the device or subsequently from Endress+Hauser, are available for the device. Detailed information on the order code in question is available from your local Endress+Hauser sales center or on the product page of the Endress+Hauser website: www.endress.com.

Device-specific accessories	Adapter for DIN rail mounting, DIN rail clip as per IEC 60715 (TH35) without securing screws	
	Standard - DIN mounting set (2 screws + springs, 4 lock washers and 1 CDI connector cover)	
	US - M4 securing screws (2 M4 screws and 1 CDI connector cover)	

Communication-specific accessories	Accessories	Description
	Commubox FXA291	Connects Endress+Hauser field devices with a CDI interface (= Endress+Hauser Common Data Interface) and the USB port of a computer or laptop. For details, see Technical Information TI405C/07
	Configuration kit TXU10	Configuration kit for PC-programmable transmitters – FDT/DTM-based plant asset management tool, FieldCare/DeviceCare and interface cable (4-pin plug-in connector) for PC with USB port.
Service-specific accessories	Accessories	Description

Accessories	Description	
Applicator	 Software for selecting and sizing Endress+Hauser measuring devices: Calculation of all the necessary data for identifying the optimum measuring device: e.g. pressure loss, accuracy or process connections. Graphic illustration of the calculation results 	
	Administration, documentation and access to all project-related data and parameters over the entire life cycle of a project.	
	Applicator is available: Via the Internet: https://portal.endress.com/webapp/applicator	
Accessories	Description	
Configurator	 Product Configurator - the tool for individual product configuration Up-to-the-minute configuration data Depending on the device: Direct input of measuring point-specific information such as measuring range or operating language Automatic verification of exclusion criteria Automatic creation of the order code and its breakdown in PDF or Excel outpromat Ability to order directly in the Endress+Hauser Online Shop 	
	The Configurator is available on the Endress+Hauser website at: www.endress. -> Click "Corporate" -> Select your country -> Click "Products" -> Select the product using the filters and search field -> Open product page -> The "Configure" button the right of the product image opens the Product Configurator.	
DeviceCare SFE100	Configuration tool for devices via fieldbus protocols and Endress+Hauser service protocols. DeviceCare is the tool developed by Endress+Hauser for the configuration of Endress+Hauser devices. All smart devices in a plant can be configured via a porto-point or point-to-bus connection. The user-friendly menus enable transpare and intuitive access to the field devices. For details, see Operating Instructions BA00027S	
FieldCare SFE500	FDT-based plant asset management tool from Endress+Hauser. It can configure all smart field units in your system and helps you manage ther using the status information, it is also a simple but effective way of checking th status and condition.	
	For details, see Operating Instructions BA00027S and BA00065S	

System components	Accessories	Description
	RN22/RN42	RN22: 1- or 2-channel active barrier for the separation of 0/4 to 20 mA standard signal circuits, optionally available as a signal doubler, 24 V DC. HART-transparent RN42: 1-channel active barrier with wide range power supply for the safe separation of 0/4 to 20 mA standard signal circuits, HART-transparent
		For details Technical Information RN22 -> TI01515K Technical Information RN42 -> TI01584K
	RIA15	Process display, digital, loop-powered digital display unit for 4 to 20 mA circuits For details, see Technical Information TI01043K
	RNB22	System power supply with wide range input 100 to 240 V _{AC} / 110 to 250 V _{DC} Primary switched mode power supply, 1-phase, output 24 V _{DC} / 2.5 A For details, see Technical Information TI01585K

Documentation

- Operating Instructions 'iTEMP TMT31' with analog output 4 to 20 mA (BA02157T) and associated printed copy of Brief Operating Instructions 'iTEMP TMT31' (KA01540T)
 Description of Device Parameters (GP01182T)
 Supplementary ATEX (XA02682T) and CSA (XA02683T) documentation

www.addresses.endress.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Endress+Hauser:

<u>TMT31-CAA1B1A1</u> <u>TMT31-AAA1B1A1</u> <u>TMT31-AAA1A1A1</u> <u>TMT31-CNA1A1A1</u> <u>TMT31-CAA1A1A1</u> <u>TMT31-CAA1A1A1</u> <u>TMT31-CAA1A1A1</u> <u>TMT31-CAA1A1A1</u>