

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lay bed ON Semiconductor and its officers, employees, ween if such claim alleges that ON Semiconductor was negligent regarding the d

FAIRCHILD

SEMICONDUCTOR®

FDB8896

N-Channel PowerTrench[®] MOSFET 30V, 93A, 5.7m Ω

General Description

This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, low $r_{\text{DS}(\text{ON})}$ and fast switching speed.

Applications

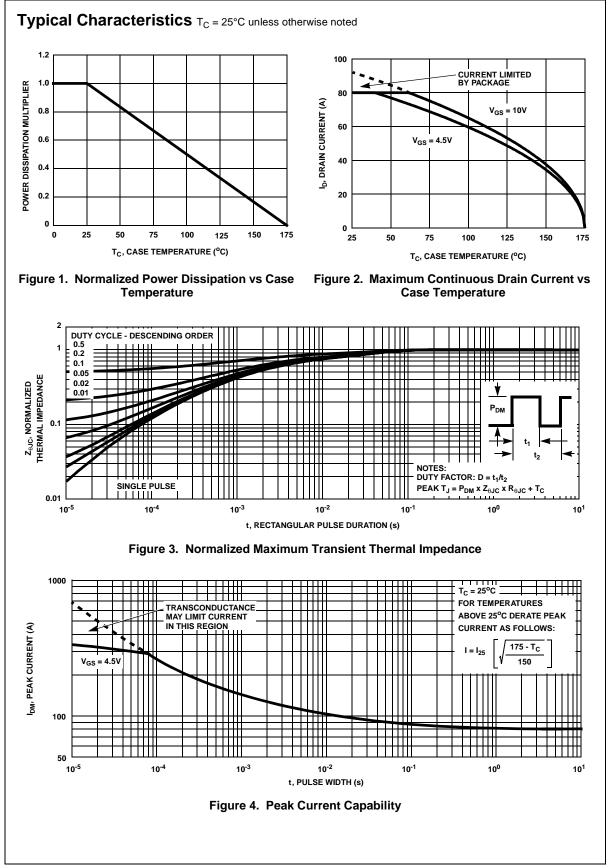
DC/DC converters

GATE SOURCE TO-263AB FDB SERIES

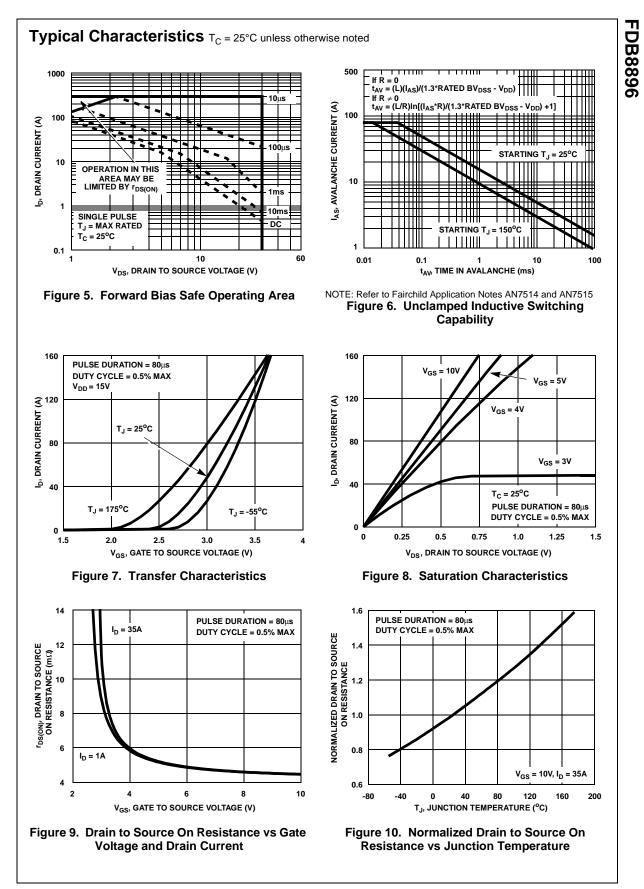
MOSFET Maximum Ratings T_C = 25°C unless otherwise noted

		0 0				
Symbol	Parameter			Ratings	Units	
V _{DSS}	Drain to Sou	to Source Voltage			30	V
V _{GS}	Gate to Sou	rce Voltage			±20	V
	Drain Curre	Drain Current				
	Continuous (T _C = 25 ^o C, V _{GS} = 10V) (Note 1)				93	А
I _D	Continuous ($T_c = 25^{\circ}C$, $V_{GS} = 4.5V$) (Note 1)				85	A
	Continuous ($T_{amb} = 25^{\circ}C$, $V_{GS} = 10V$, with $R_{\theta JA} = 43^{\circ}C/W$)				19	A
	Pulsed			Figure 4	A	
E _{AS}	Single Pulse Avalanche Energy (Note 2)			74	mJ	
	Power dissipation			80	W	
PD	Derate above 25°C			0.53	W/ºC	
T _J , T _{STG}	Operating a	Dperating and Storage Temperature			-55 to 175	°C
Thermal _{R_{θJC}}	Charact	t eristics sistance Junction to C	Case TO-263		1.88	°C/W
R_{\thetaJA}	Thermal Resistance Junction to Ambient TO-263 (Note 3)				62	°C/W
R_{\thetaJA}	Thermal Resistance Junction to Ambient TO-263, 1in ² copper pad area 43				43	°C/W
Package		g and Orderin	•	1	Tono Width	Quantitu
Device M FDB8	•	FDB8896	TO-263AB	Reel Size 330mm	Tape Width 24mm	Quantity 800 units
FDBd	3890	FDB8896	TO-263AB	330mm	24000	800 units

- Features
- $r_{DS(ON)} = 5.7 m\Omega$, $V_{GS} = 10V$, $I_D = 35A$
- $r_{DS(ON)} = 6.8 m\Omega$, $V_{GS} = 4.5 V$, $I_D = 35 A$
- High performance trench technology for extremely low $r_{\mbox{DS}(\mbox{ON})}$
- · Low gate charge
- High power and current handling capability

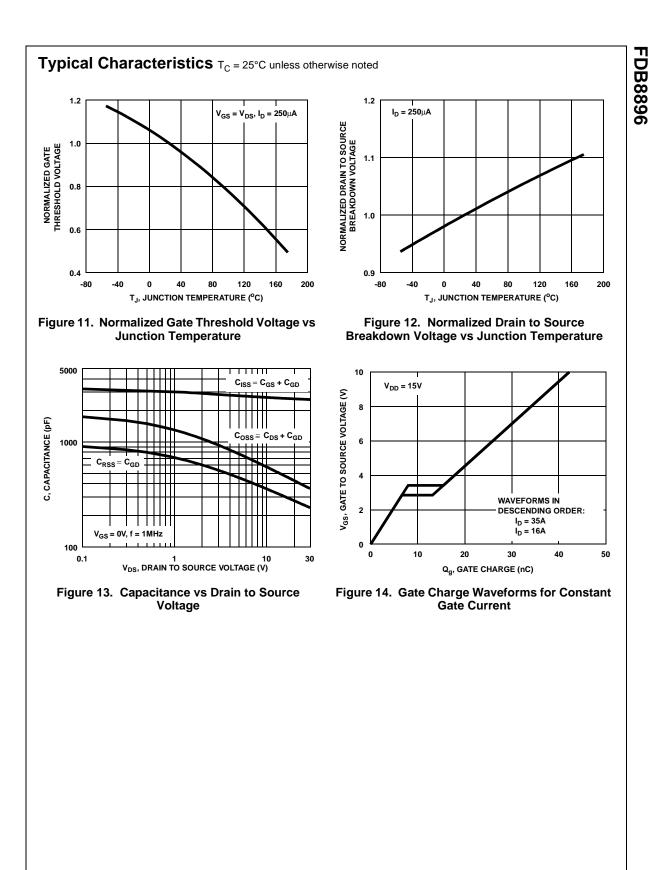

FDB8896

May 2008

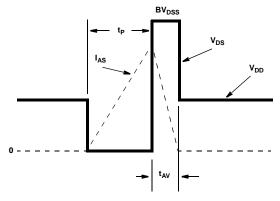

Symbol	Parameter	Test Conditions		Min	Тур	Max	Units
Off Chara	acteristics						
B _{VDSS}	Drain to Source Breakdown Voltage	I _D = 250μA, V _{GS} =	= 0V	30	-	-	V
	-	$V_{DS} = 24V$		-	-	1	
IDSS	Zero Gate Voltage Drain Current	50	T _C = 150°C	-	-	250	μA
I _{GSS}	Gate to Source Leakage Current	V _{GS} = ±20V		-	-	±100	nA
On Chara	acteristics						
V _{GS(TH)}	Gate to Source Threshold Voltage	V _{GS} = V _{DS} , I _D = 250μA		1.2	-	2.5	V
		I _D = 35A, V _{GS} = 10V		-	0.0049	0.0057	
r	Drain to Source On Resistance	I _D = 35A, V _{GS} = 4	I _D = 35A, V _{GS} = 4.5V		0.0059	0.0068	Ω
r _{DS(ON)}		$I_D = 35A, V_{GS} = 10V,$ $T_1 = 175^{\circ}C$		-	0.0078	0.0094	Ω
Dynamic	Characteristics	Ū		1			
C _{ISS}	Input Capacitance	V _{DS} = 15V, V _{GS} = 0V, f = 1MHz		-	2525	-	pF
C _{OSS}	Output Capacitance			-	490	-	pF
C _{RSS}	Reverse Transfer Capacitance			-	300	-	pF
R _G	Gate Resistance	V _{GS} = 0.5V, f = 1MHz		-	2.3	-	Ω
Q _{g(TOT)}	Total Gate Charge at 10V	$V_{GS} = 0V \text{ to } 10V$		-	48	67	nC
Q _{g(5)}	Total Gate Charge at 5V	$V_{CS} = 0V$ to 5V		-	25	36	nC
Q _{g(TH)}	Threshold Gate Charge	$V_{ee} = 0V \text{ to } 1V$	$V_{DD} = 15V$	-	2.3	3.0	nC
Q _{gs}	Gate to Source Gate Charge		I _D = 35A I _a = 1.0mA	-	8	-	nC
Q _{gs2}	Gate Charge Threshold to Plateau			-	5.7	-	nC
Q _{gd}	Gate to Drain "Miller" Charge			-	9.5	-	nC
Switching	g Characteristics (V _{GS} = 10V)						
t _{ON}	Turn-On Time			-	-	167	ns
t _{d(ON)}	Turn-On Delay Time	_		-	9	-	ns
t _r	Rise Time	$V_{DD} = 15V, I_D = 35A$ $V_{GS} = 4.5V, R_{GS} = 6.2\Omega$		-	102	-	ns
t _{d(OFF)}	Turn-Off Delay Time			-	58	-	ns
t _f	Fall Time			-	44	-	ns
t _{OFF}	Turn-Off Time			-	-	153	ns
Drain-So	urce Diode Characteristics						
V _{SD}	Source to Drain Diade Veltage	I _{SD} = 35A		-	-	1.25	V
	Source to Drain Diode Voltage	$I_{SD} = 20A$		-	-	1.0	V
t _{rr}	Reverse Recovery Time	$I_{SD} = 35A$, $dI_{SD}/dt = 100A/\mu s$		-	-	27	ns
Q _{RR}	Reverse Recovered Charge	$I_{SD} = 35A$, $dI_{SD}/dt = 100A/\mu s$		-	-	12	nC

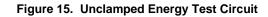
©2008 Fairchild Semiconductor Corporation

FDB8896



©2008 Fairchild Semiconductor Corporation


©2008 Fairchild Semiconductor Corporation


FDB8896 Rev. B2

Test Circuits and Waveforms

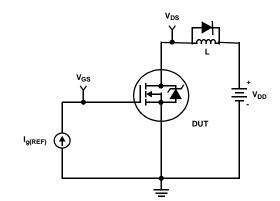


Figure 17. Gate Charge Test Circuit

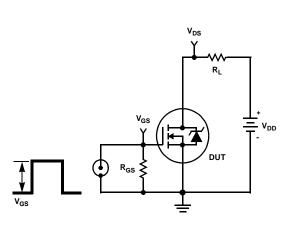


Figure 19. Switching Time Test Circuit

Figure 16. Unclamped Energy Waveforms

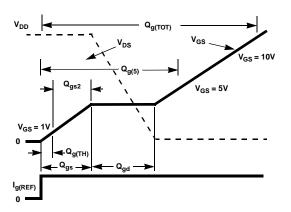
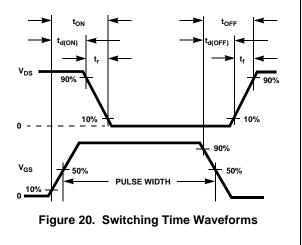



Figure 18. Gate Charge Waveforms

Thermal Resistance vs. Mounting Pad Area

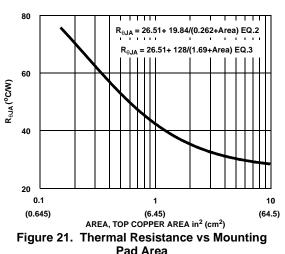
The maximum rated junction temperature, T_{JM} , and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, P_{DM} , in an application. Therefore the application's ambient temperature, T_A (°C), and thermal resistance $R_{\theta JA}$ (°C/W) must be reviewed to ensure that T_{JM} is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part.

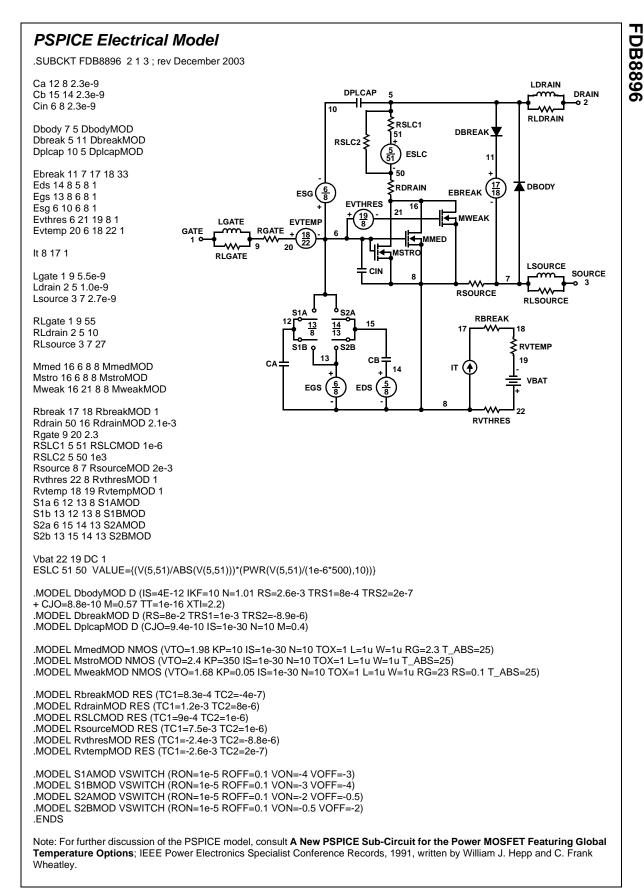
$$P_{DM} = \frac{(T_{JM} - T_A)}{R_{\theta JA}}$$
(EQ. 1)

In using surface mount devices such as the TO-263 package, the environment in which it is applied will have a significant influence on the part's current and maximum power dissipation ratings. Precise determination of P_{DM} is complex and influenced by many factors:

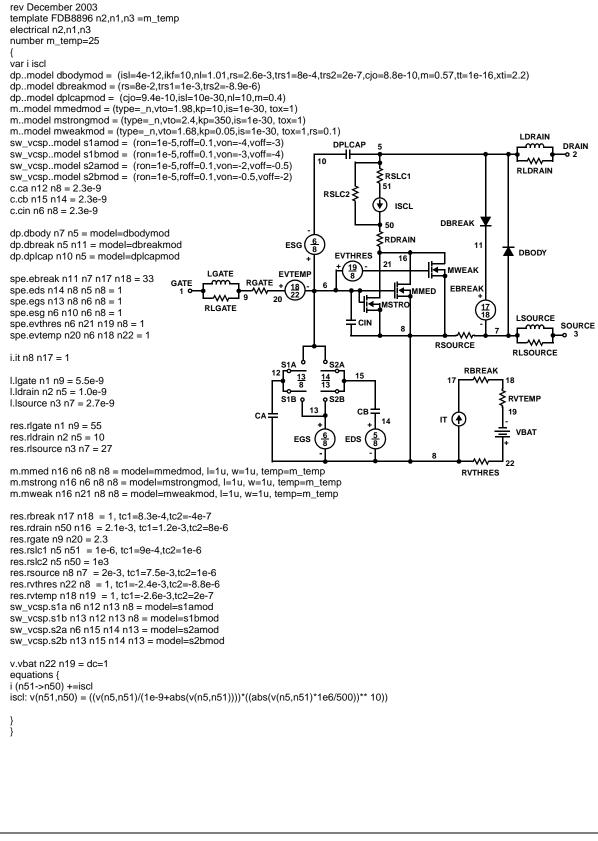
- 1. Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board.
- 2. The number of copper layers and the thickness of the board.
- 3. The use of external heat sinks.
- 4. The use of thermal vias.
- 5. Air flow and board orientation.
- 6. For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in.

Fairchild provides thermal information to assist the designer's preliminary application evaluation. Figure 21 defines the $R_{\theta,JA}$ for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR-4 board with 1oz copper after 1000 seconds of steady state power with no air flow. This graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Fairchild device Spice thermal model or manually utilizing the normalized maximum transient thermal impedance curve.

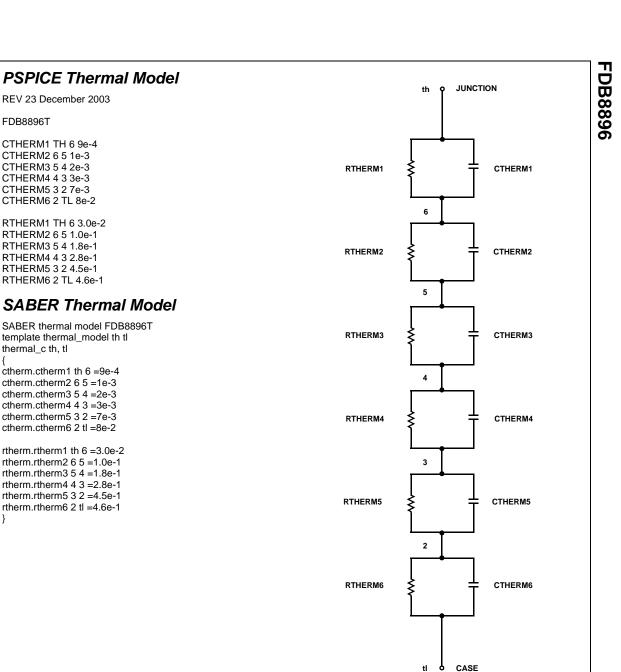

Thermal resistances corresponding to other copper areas can be obtained from Figure 21 or by calculation using Equation 2 or 3. Equation 2 is used for copper area defined in inches square and equation 3 is for area in centimeters square. The area, in square inches or square centimeters is the top copper area including the gate and source pads.


$$R_{\theta JA} = 26.51 + \frac{19.84}{(0.262 + Area)}$$
 (EQ. 2)

Area in Inches Squared


$$R_{\theta JA} = 26.51 + \frac{128}{(1.69 + Area)}$$
(EQ. 3)

Area in Centimeters Squared



SABER Electrical Model

©2008 Fairchild Semiconductor Corporation

tl Y

}

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidianries, and is not intended to be an exhaustive list of all such trademarks.

Build it Now [™] CorePLUS [™] CorePOWER [™] <i>CROSSVOLT</i> [™] CTL [™] Current Transfer Logic [™] EcoSPARK [®] EfficentMax [™] EZSWITCH [™] * Fairchild [®] Fairchild [®] Fairchild Semiconductor [®] FACT Quiet Series [™] FACT [®] FAST [®] EactvCore M	FRFET [®] Global Power Resource SM Green FPS [™] e-Series [™] GTO [™] IntelliMAX [™] ISOPLANAR [™] MegaBuck [™] MICROCOUPLER [™] MicroFET [™] MicroFET [™] MicroPak [™] MillerDrive [™] MotionMax [™] Motion-SPM [™] OPTOLOGIC [®] OPTOPLANAR [®]	PowerTrench [®] Programmable Active Droop [™] QFET [®] QS [™] Quiet Series [™] RapidConfigure [™] Saving our world 1mW at a time [™] SmartMax [™] SMART START [™] SPM [®] STEALTH [™] SuperFET [™] SuperSOT [™] -3 SuperSOT [™] -6 SuperSOT [™] -8 SuperMOS [™]	the franchise TinyBoost [™] TinyBuck [™] TinyLogic [®] TINYOPTO [™] TinyPower [™] TinyPWM [™] TinyPWM [™] TinyWire [™] µSerDes [™] WE SerDes [™] UHC [®] Ultra FRFET [™] VisualMax [™]
FAST [©] FastvCore™ FlashWriter [®] *	OPTOPLANAR [®]	SuperMOS™ System ® General	VisualMax ™

* EZSWITCH™ and FlashWriter[®] are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS Definition of Terms

Product Status	Definition		
Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
First Production	This datasheet contains preliminary data; supplementary data will be pub- lished at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Not In Production	This datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		
	Formative or In Design First Production Full Production		

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: