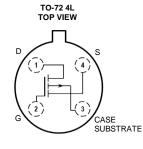
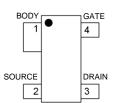
LINEAR SYSTEMS


3N163 and 3N164

Over 30 Years of Quality Through Innovation

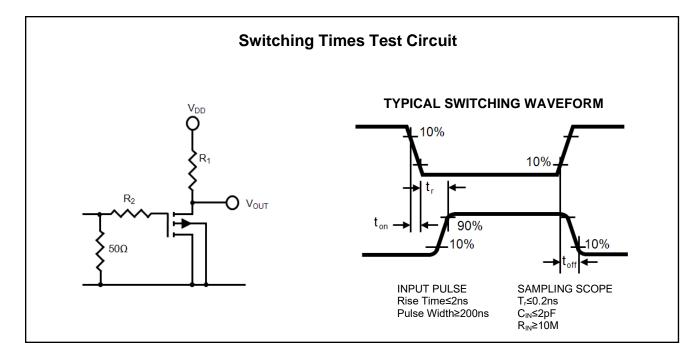

P-Channel Enhancement Mode MOSFET

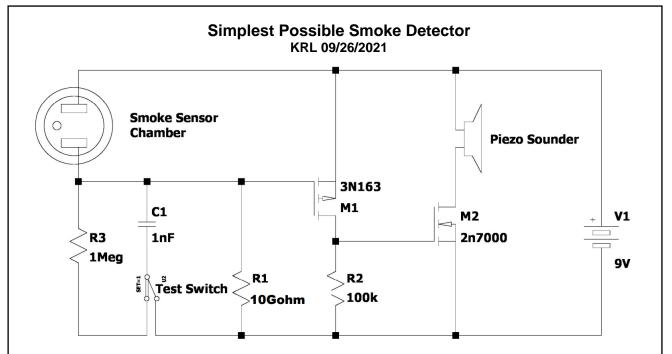
VERY HIGH INPUT IMPEDANCE, HIGH GATE BREAKDOWN, FAST SWITCHING, LOW CAPACITANCE

FEATURES				
VERY HIGH INPUT IMPEDANCE				
HIGH GATE BREAKDOWN				
ULTRA LOW LEAKAGE				
FAST SWITCHING				
LOW CAPACITANCE				
ABSOLUTE MAXIMUM RATINGS				
@ 25°C (unless otherwise stated)				
Drain-Source or Drain-Gate Voltage				
3N163	-40V			
3N164	-30V			
Drain Current	50mA			
Storage Temperature	-55°C to +150°C			
Power Dissipation TO-72 case	375mW ²			
Power Dissipation SOT-143 case	350mW ³			

TO-72 4L PACKAGE PHOTO

SOT-143 4L TOP VIEW

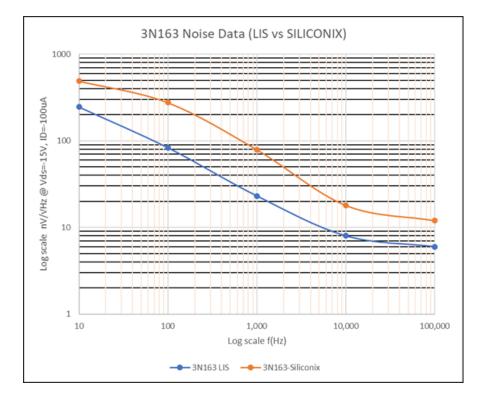

ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise noted)


SYMBOL	CHARACT	ERISTIC	3N ²	163	3N164		UNITS	CONDITIONS	
			MIN	MAX	MIN	MAX			
Igss	Gate Leakage Current			-10		-10		V _{GS} =-40V,	V _{DS} =0 (3N163), V _{SB} =0V
		T _A =+125°C		-25		-25	pА	V _{GS} =-30V,	V _{DS} =0 (3N164), V _{SB} =0V
BV _{DSS}	Drain-Source Breakd	lown Voltage	-40		-30			I _D =-10μΑ	$V_{GS}=0, V_{BS}=0$
BV _{SDS}	Source-Drain Breakd	lown Voltage	-40		-30			Is=-10µA	V _{GD} =0, V _{BD} =0
V _{GS(th)}	Threshold Voltage		-2.0	-5.0	-2.0	-5.0	V	V _{DS} =V _{GS}	I _D =-10μΑ, V _{SB} =0V
V _{GS}	Gate Source Voltage	(on)	-3.0	-6.5	-3.0	-6.5		V _{DS} =-15V	I _D =-0.5mA, V _{SB} =0V
IDSS	Zero Gate Voltage, Drain Current (off) Zero Gate Voltage, Source Current			-200		-400	рА	V _{DS} =-15V	V _{GS} =0, V _{SB} =0V
I _{SDS}				-400		-800		V_{SD} =-15V	$V_{GS}=0, V_{DB}=0V$
RDS(on)	Drain-Source on Resistance			250		300	ohms	V _{GS} =-20V	I _D =-100μΑ, V _{SB} =0V
I _{D(on)}	On Drain Current		-5.0	-30	-3.0	-30	mA	V_{DS} =-15V	V_{GS} =-10V, V_{SB} =0V
g fs	Forward Transcondu	ctance	2.0	4.0	1.0	4.0	mS		
gog	Output Admittance			250		250	μS	V _{DS} =-15V	I _D =-10mA f=1kHz
C _{iss}	Input Capacitance-O	utput Shorted		3.5		3.5		V _{DS} =-15V	I⊳=-10mA ¹ f=1MHz
Crss	Reverse Transfer Ca	pacitance		0.7		0.7	pF		
Coss	Output Capacitance	Input Shorted		3.0		3.0			

P-Channel Enhancement Mode MOSFET

SWITCHI	SWITCHING CHARACTERISTICS $T_A=25^{\circ}C$ and $V_{BS}=0$ (unless otherwise hoted)							
SYMBOL	CHARACTERISTIC	3N163 3N		3N164		UNITS	CONDITIONS	
		MIN	MAX	MIN	MAX			
t _{on}	Turn-On Delay Time		12		12		V _{DD} =-15V, V _{SB} =0V	
tr	Rise Time		24		24	ns	I _{D(on)} =-10mA ¹	
t _{off}	Turn-Off Time		50		50		$R_G=R_L=1.4K$	

SWITCHING CHARACTERISTICS T_A=25°C and V_{BS}=0 (unless otherwise noted)


P-Channel Enhancement Mode MOSFET

NOTES:

- 1. For design reference only, not 100% tested.
- 2. Derate 3mW/°C above 25°C
- 3. Derate 3.5mW/ºC above 25ºC
- 4. All min/max limits are absolute numbers. Negative signs indicate electrical polarity only.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Information furnished by Linear Integrated Systems is believed to be accurate and reliable. However, no responsibility is assumed for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Linear Integrated Systems.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Linear Integrated Systems:

3N163-SOT-143-4L-TR 3N163 SOT-143 4L RoHS 3N163-SOT-143-4L-CT 3N163 TO-72 4L RoHS