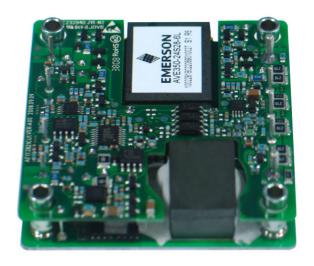


24Vdc Input, 28Vdc@12.5A Output Half-brick DC-DC Converter AVE350-24S28

Description

The AVE350-24S28 is a single output DC-DC converter with standard half-brick outline and pin configuration. It delivers up to 12.5A output current with 28V output voltage. Above 94% ultra-high efficiency and excellent thermal performance makes it an ideal choice to supply power to a power amplifier in telecom and datacom. Thanks to the aluminium baseplate it can work under -40°C ~ +85°C without air cooling.

Operational Features


- Delivering up to 12.5A output current
- Ultra-high efficiency 94% typ. at half load
- Wide input range: 18V ~ 36V
- Excellent thermal performance
- No minimum load requirement
- RoHS 6 compliant

Control Features

- Remote control function (negative or positive logic optional)
- Remote output sense
- Trim function: 50% ~ 118%

Protection Features

- Input under voltage lockout
- Output over current protection
- Output over voltage protection
- Over temperature protection

Mechanical Features

- Industry standard half-brick pin-out outline
- With baseplate
- Pin length option: 3.8mm

Safety & EMC

- Meets safety standards UL 60950-1, CSA-C22.2 NO. 60950-1, IEC/EN 60950-1 and GB4943
- Approved by UL and TUV
- Meets 2006/95/EEC and 93/68/EEC directives which facilitates CE marking in user's end product
- Meets conducted emission's requirements of EN55022 Class A with external filter

Electrical Characteristics

Full operating ambient temperature range is -40°C to +85°C. Specifications are subject to change without notice.

Pa	Min.	Тур.	Max.	Unit	Notes & Conditions	
		Ab	solute ma	x. ratings		
Input voltage	Non-operating			50	V	100ms
Input voltage	Operating			40	٧	Continuous
Operating temp	perature	-40		85	°C	
Storage temper	rature	-55		125	°C	
Voltage at remo	ote ON/OFF pin	-0.3		15	V	
		In	put chara	cteristics		
Operating input	voltage range	18	24	36	V	
	Turn-on voltage threshold	16	17	18	V	
Input under-voltage lockout	Turn-off voltage threshold	15	16	17	V	
	Lockout voltage hysteresis	0.5			V	
Max. input curre	ent			22	Α	18V _{in} , output 350W
No-load input c	urrent			0.25	Α	
Standby Input of	current			0.02	Α	Remote OFF
Input reflected	ripple current		50	300	mA _{rms}	Through 12µH inductor; Figure 15 24Vin, output:28V/12.5A
Recommended	input fuse			30	А	Fast blow external fuse recommended; Figure 10
Input filter comp	ponent values (C\L)		28/0.56		μF\μH	Internal values
Recommended capacitance	external input		470		μF	Low ESR capacitor recommended; Figure 10
		Ou	tput chara	acteristics		
Output voltage set point (standard option)		27.72	28	28.28	V	24V _{in} , half load
Output voltage line regulation			0.05	0.5	%	
Output voltage	iiile regulation		14	140	mV	
Output valtage	lood regulation		0.1	0.5	%	
Output voltage	ioad regulation		28	140	mV	

	Min.	Тур.	Max.	Unit	Notes & Conditions				
Output volta regulation	Output voltage temperature regulation		0.005	0.02	%/°C				
Total output	voltage range	27.16	28	28.84	V	Over sample, line, load, temperature & life			
Output volta	ge ripple and noise		100	300	m∨pp	Figure 2 20MHz bandwidth; Figure 15			
Operating or	utput current range	0		12.5	Α	Module can work in 30V/13.3A stably			
Output DC o	current-limit inception	13.5		17.5	Α	Foldback: see Figure 9			
Output capa	Output capacitance		680	4000	μF	High frequency and low ESR is recommended			
		Dyn	amic cha	racteristic	s				
Dynamic response	50% ~ 75% ~ 50% I _{o,max} , 0.1A/μs		480		mV	Figure 4 Test condition: 25°C, nominal input voltage, see Figure 10			
	Settling time		160		μs	Recovery to within 1% V _{o,nom}			
	Rise time		60	100	ms	Full load, Figure 5			
Turn-on	Turn-on delay time		20	40	ms				
transient	Output voltage overshoot		0	1	%V _o				
	Efficiency								
100% load	100% load				%	Figure 1			
50% load			94		%	Figure 1			

Electrical Characteristics (Continued)

Parameter	Min.	Тур.	Max.	Unit	Notes & Conditions				
Isolation characteristics									
	1500			V	Basic insulation, pollution degree 2, input to output				
Isolation voltage (conditions: 1mA for 60s, slew rate of 1500V/10s)	1500			V	Basic insulation, pollution degree 2, input to baseplate				
,	500			V	Basic insulation, pollution degree 2, output to baseplate				
Feature characteristics									
Switching frequency	200	220	240	kHz					

Param	Parameter		Тур.	Max.	Unit	Notes & Conditions
Remote ON/OFF	Off-state voltage	-0.3		0.8	V	See Figure 11
control (positive logic)	On-state voltage	2.4		15	V	- Gee Figure 11
Remote ON/OFF	Off-state voltage	2.4		15	V	
control (negative logic)	On-State Voltage	-0.3		0.8	V	See Figure 11
Output voltage t	Output voltage trim range			33	V	See Trim Characteristics of Application Note
Output voltage r	emote sense			0.5	V	
Output over-volt protection	age	125	135	150	%V _{o,nom}	Latch: remain latched after OVP shutdown untill power on or remote ON
Over-temperatur	Over-temperature shutdown		110		°C	Auto recovery; Test point: see Figure 18
Over-temperature hysteresis		5			°C	
			Reliabil	ity chara	cteristics	,
Calculated MTB	F (telcordia)		1.0		10 ⁶ h	Board@25°C, normal input/output Bellcore, TR332 method 1, case 3

Qualification Testing

Parameter	Unit (pcs)	Test condition
Halt test	4 ~ 5	$T_{a,min}$ -10°C to $T_{a,max}$ +10°C, 5°C step, V_{in} = min to max, 0 ~ 105% load
Vibration	3	Frequency range: 5Hz ~ 20Hz, 20Hz ~ 200Hz, A.S.D: 1.0m²/s³, -3db/oct, axes of vibration: X/Y/Z Time: 30min/axis
Mechanical shock	3	30g, 6ms, 3axes, 6directions, 3time/direction
Thermal shock	3	-40°C to 100°C, unit temperature 20cycles
Thermal cycling	3	-40°C to 85°C, temperature change rate: 1°C/min, cycles: 2cycles
Humidity	3	40°C, 95%RH, 48h
Solder ability	15	IPC J-STD-002C-2007

Characteristic Curves

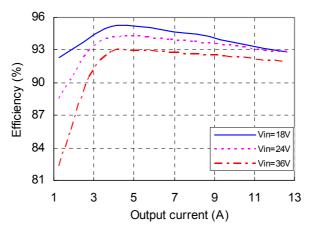


Figure 1 Efficiency vs. output current, T_a=25°C, T_c<40°C, V_o=28V

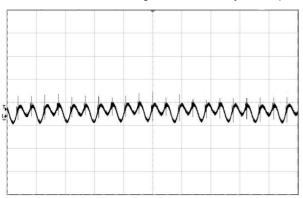
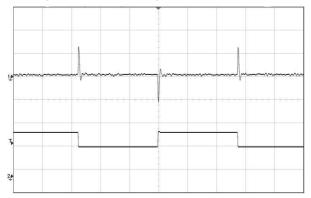



Figure 2 Output ripple & noise ($10\mu s/div$, 100mV/div), see Figure 15 for test configuration

Figure 3 Input reflected ripple current (5µs/div , 10mA/div), see Figure 15 for test configuration

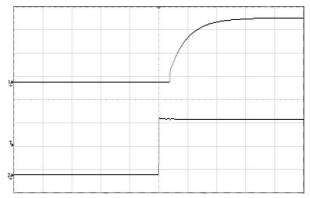
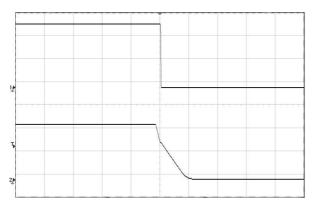
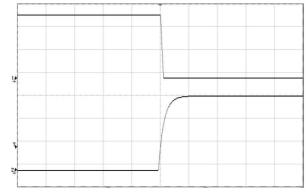



Figure 4 Dynamic response for 25% load step (50% \sim 75% \sim 50%) and 0.1A/ μ s slew rate, (2ms/div), see Figure 10 for test configuration; CH1-output voltage (200mV/div); CH2-output current (10A/div)


Figure 5 Output voltage startup by power on, (50ms/div), see Figure 10 for test configuration; CH1-output voltage (10V/div); CH2-intput voltage (10V/div)

T- 22

Figure 6 Output voltage shut down by power off, (50ms/div), see Figure 10 for test configuration; CH1-output voltage (10V/div); CH2-input voltage (10V/div)

Figure 7 Output voltage startup by remote ON, (50ms/div), see Figure 10 for test configuration; CH1-output voltage (10V/div); CH2-remote ON (2V/div)

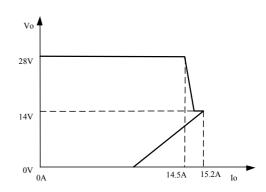


Figure 8 Output voltage shutdown by remote OFF, (10ms/div), see Figure 10 for test configuration; CH1-output voltage (10V/div); CH2-remote OFF voltage (2V/div)

Figure 9 Over-current protection characteristics

Application Note

Typical Application

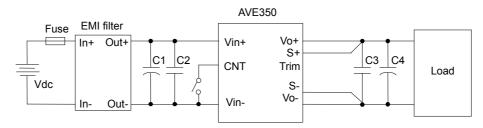


Figure 10 Typical application

C1: 470µF/100V electrolytic capacitor, P/N: UPW2A471MHD (Nichicon) or equivalent caps

C2, C3: 1µF/100V X7R ceramic capacitor, P/N: C3225X7R2A105KT0L0U (TDK) or equivalent caps

C4: 680µF/63V electrolytic capacitor, P/N: UPW1J681MHD(Nichicon) or equivalent caps

Note: If ambient temperature is below -5°C, additional $680\mu\text{F}$ electrolytic capacitor (Low ESR) is needed for output.

Fuse: External fast blow fuse with a rating of 30A. The recommended fuse model is 314030 from LITTLEFUSE.

Remote ON/OFF

Either positive or negative remote ON/OFF logic is available in AVE350-24S28. The logic is CMOS and TTL compatible.

The following figure is the detailed internal circuit and reference in AVE350-24S28.

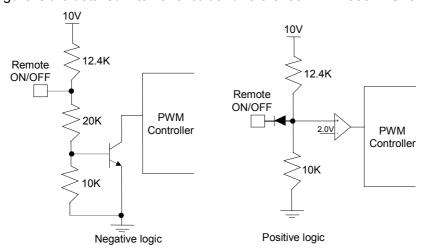


Figure 11 Remote ON/OFF internal diagram

Trim Characteristics

Connecting an external resistor between Trim pin and V_{o} - pin will decrease the output voltage. While connecting it between Trim and V_{o} + will increase the output voltage. The following equations determine the external resistance to obtain the trimmed output voltage.

$$R_{adj_down} = (\frac{100\%}{\Delta\%} - 2)k\Omega$$

$$R_{adj_up} = (\frac{V_O(100\% + \Delta\%)}{1.225 \times \Delta\%} - \frac{100\% + 2 \times \Delta\%}{\Delta\%})k\Omega$$

 $\Delta\%$: Output voltage rate against nominal output voltage.

 V_{norm} : Nominal output voltage.

For example, to get 33V output, the trimming resistor is

$$R_{adj_up} = (\frac{33}{1.225 \times (33 - 28)/28} - \frac{100\% + 2 \times (33 - 28)/28}{(33 - 28)/28}) = 143.26k\Omega$$

$$\frac{\text{Vo+}}{\text{S+}}$$

$$\frac{\text{Trim up Cout}}{\text{Trim up Cout}}$$
Figure 12 Trim up
$$\frac{\text{S-}}{\text{Vo-}}$$
Figure 13 Trim down

The output voltage can also be trimmed by potential applied at the Trim pin.

$$V_o = 11.43 \times V_{trim} + 14$$

Where V_{trim} is the potential applied at the Trim pin, and V_o is the desired output voltage.

When trimming up, the output current should be decreased accordingly so as not to exceed the maximum output power and the minimum input voltage should be increased as shown in figure 14.

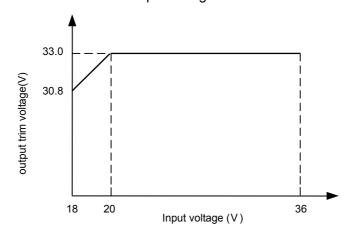


Figure 14 Output trim voltage vs. input voltage

Sense Characteristics

If the load is far from the unit, connect S+ and S- to the terminal of the load respectively to compensate the voltage drop on the transmission line. See Figure 10.

If the sense compensate function is not necessary, connect S+ to V_0 + and S- to V_0 - directly.

Input Ripple & Inrush Current And Output Ripple & Noise Test Configuration

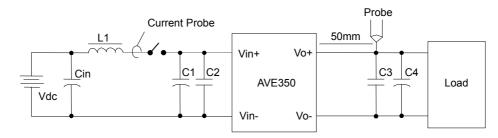


Figure 15 Input ripple & inrush current, ripple & noise test configuration

Vdc: DC power supply

L1: 12µH

Cin: $220\mu F/100V$ typical C1 ~ C4: See Figure 10

Note: Using a coaxial cable with series 50Ω resistor and 0.68μ F ceramic capacitor or a ground ring of probe to test output ripple & noise is recommended.

EMC Filter Configuration

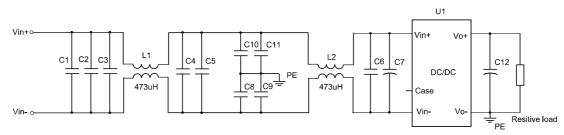
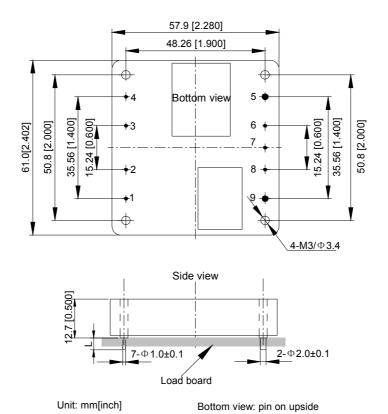


Figure 16 EMC test configuration

U1: Module to test, AVE350-24S28

C1 ~ C5: 1uF/100V X7R ceramic capacitor, P/N: C3225X7R2A105KT (TDK) or equivalent caps C6:0.1uF/100V X7R ceramic capacitor, P/N: 12101C104JAT2A (AVX) or equivalent caps


C8 ~ C11: 0.22uF/630V X7R ceramic capacitor, P/N: 2220CC224KA11A (AVX) or equivalent caps

C7: $470\mu F/100V$ electrolytic capacitor, P/N: UPW2A471MHD (Nichicon) or equivalent caps

C12:680uF/63V electrolytic capacitor, P/N: UPW1J681MHD(Nichicon) or equivalent caps

PE: Connect to Vo-Case: Not connected

Mechanical Diagram

$$\label{eq:continuity} \begin{split} \text{Tolerance: X.Xmm\pm0.5mm[X.X in.\pm0.02in.]} \\ \text{X.XXmm\pm0.25mm[X.XX in.\pm0.01in.]} \end{split}$$

Figure 17 Mechanical diagram

Pin length option

Device code suffix	L
-4	4.8mm±0.2mm
-6	3.8mm±0.2mm
-8	2.8mm±0.2mm
None	5.8mm±0.2mm

Pin Designations

Pin NO.	Name	Function
1	V _{in} +	Positive input voltage
2	CNT	Remote control
3	Case	Pin connected to baseplate
4	V _{in} -	Negative input voltage
5	V _o -	Negative output voltage
6	S-	Negative sense
7	Trim	Output voltage trim
8	S+	Positive sense
9	V _o +	Positive output voltage

Soldering

The product is intended for standard manual or wave soldering.

When wave soldering is used, the temperature on pins is specified to maximum 260°C for maximum 7s.

When soldering by hand, the iron temperature should be maintained at 300° C $\sim 380^{\circ}$ C and applied to the converter pins for less than 10s. Longer exposure can cause internal damage to the converter.

Cleaning of solder joint can be performed with cleaning solvent IPA or similative.

Thermal Considerations

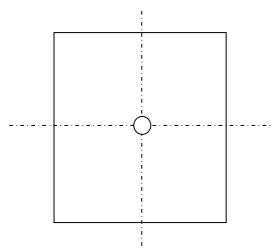


Figure 18 Temperature test point on baseplate

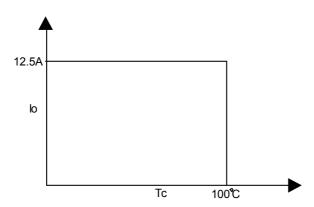


Figure 19 $\,$ Output power derating, $24V_{in}$

T_c: temperature test point on baseplate, see Figure 18 for test configuration

Ordering Information

AVE350	-	24	S	28	P	•	6	L	1	M
1		2	3	4	(5)		6	7		8

1)	Model series	AVE: high efficiency half brick series, 350: output power 350W
2	Input voltage	24: 18V ~ 36V input range, rated input voltage 24V
3	Output number	S: single output
4	Rated output voltage	28: 28V output
(5)	Remote ON/OFF logic	Default: negative; P: positive logic
6	Pin length	-6: 3.8mm
7	RoHS status	L: RoHS, R6
8	Structure	Default: through hole; M: screw thread

Model number	Description
AVE350-24S28-6L	3.8mm pin length; negative on/off logic; without thread inside mounting hole; R6 compliant
AVE350-24S28P-6L	3.8mm pin length; positive on/off logic; without thread inside mounting hole; R6 compliant
AVE350-24S28-6L/M	3.8mm pin length; negative on/off logic; with thread inside mounting hole; R6 compliant
AVE350-24S28P-6L/M	3.8mm pin length; positive on/off logic; with thread inside mounting hole; R6 compliant
AVE350-24S28-6Y	3.8mm pin length; negative on/off logic; without thread inside mounting hole; R5 compliant

Hazardous Substances Announcement (RoHS Of China)

Parts	Hazardous substances								
Parts	Pb	Hg	Cd	Cr ⁶⁺	PBB	PBDE			
AVE350-24S28	0	0	0	0	0	0			

o: Means the content of the hazardous substances in all the average quality materials of the part is within the limits specified in SJ/T-11363-2006

Emerson Network Power Co., Ltd. has been committed to the design and manufacturing of environment-friendly products. It will reduce and eventually eliminate the hazardous substances in the products through unremitting efforts in research. However, limited by the current technical level, the following parts still contain hazardous substances due to the lack of reliable substitute or mature solution:

- 1. Solders (including high-temperature solder in parts) contain plumbum.
- 2. Glass of electric parts contains plumbum.
- 3. Copper alloy of pins contains plumbum

 $[\]sqrt{}$: Means the content of the hazardous substances in at least one of the average quality materials of the part is outside the limits specified in SJ/T11363-2006

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Emerson Network Power:

AVE350-24S28-6L AVE350-24S28P-6L