New product version is available in ES9020Q

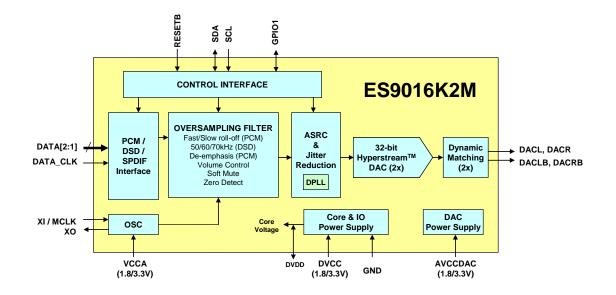
The *ES9016K2M SABRE*^{32®} *Ultra DAC* is a high-performance 32-bit, 2-channel audio D/A converter targeted for portable high-fidelity audio power sensitive applications such as digital music players, consumer applications such as Blu-ray players, audio pre-amplifiers and A/V receivers, as well as professional applications such as recording systems, mixer consoles and digital audio workstations.

Using the critically acclaimed ESS patented 32-bit HyperStream® DAC architecture and Time Domain Jitter Eliminator, the **ES9016K2M SABRE**^{32®} **Ultra DAC** delivers a DNR of up to 122dB and THD+N of –110dB, a performance level that will satisfy the most demanding audio enthusiasts.

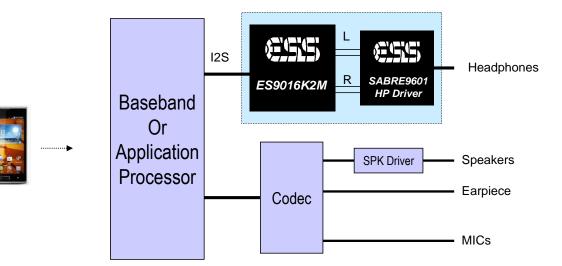
The **ES9016K2M SABRE^{32®} Ultra DAC**'s 32-bit HyperStream® architecture can handle up to 32-bit, 384kHz PCM data via I²S, DSD-11.2MHz data as well as mono mode for highest performance applications. Both synchronous and ASRC (asynchronous sample rate conversion) modes are supported.

The **ES9016K2M SABRE® Ultra DAC** is powered by a +1.8V to +3.3V supply for both the digital and analog sections, with internal regulators generating the core supply. The DAC comes in a 28-QFN package, supports 1.8V logic levels and consumes less than 40mW in normal operating mode (< 1mW in standby mode)

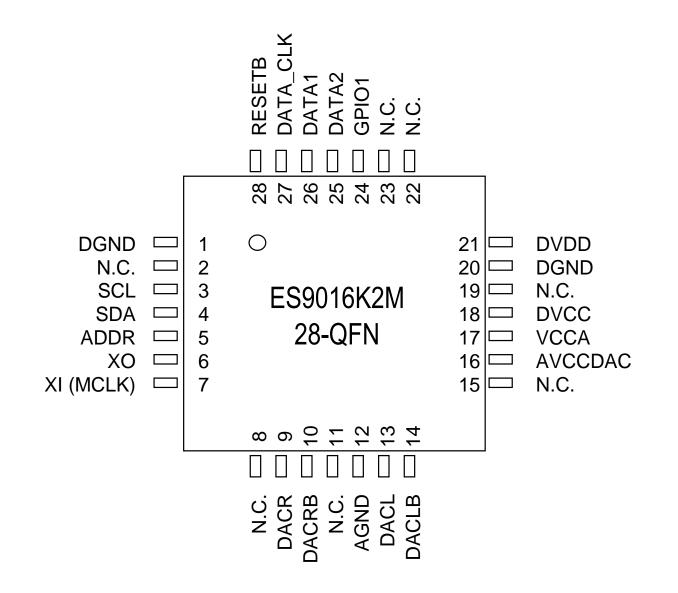
The **SABRE®** Ultra DAC sets a new standard for high quality audio performance, **SABRE SOUND**[®], in a cost effective, easy-to-use form factor for today's most demanding digital audio applications.


FEATURE	DESCRIPTION
Patented 32-bit HyperStream® DAC +122dB DNR –110dB THD+N 	 32-bit audio DAC powered by Sabre^{32®} DAC architecture with unmatched dynamic range and ultra low distortion Supports both synchronous and ASRC (asynchronous sample rate converter) modes
Patented Time Domain Jitter Eliminator	 Unmatched audio clarity free from input clock jitter
64-bit accumulator and 32-bit processing	 Distortion free signal processing
Integrated DSP Functions	 Click-free soft mute and volume control Programmable Zero detect De-emphasis for 32kHz, 44.1kHz, and 48kHz sampling
Customizable output configuration	 Mono or stereo output in current or voltage mode based on performance criterion
I ² C control	 Allows software control of DAC features
28-QFN (5mm x 5mm) package	 Minimizes PCB footprint
< 40mW operating, < 1mW standby power	 Maximizes battery life
1.8 to 3.3V analog & digital power supplies	 Reduces power and simplifies power supply design
1.8V digital logic supported	 Connects to Application Processor without level shifter
Versatile digital input	 Supports SPDIF, PCM (I²S, LJ 16-32-bit) or DSD input
Customizable filter characteristics	 User programmable filter allowing custom roll-off response Bypassable oversampling filter

APPLICATIONS


- Mobile phones / Tablets / Digital music players / Portable multimedia players
- Blu-ray / SACD / DVD-Audio player
- Audio preamplifier and A/V receiver
- Professional audio recording systems / Mixing consoles / Digital audio workstation

FUNCTIONAL BLOCK DIAGRAM


TYPICAL APPLICATION DIAGRAM

PIN LAYOUT

3

PIN DESCRIPTIONS

Pin	Name	Pin Type	Reset State	Pin Description
1	DGND	Ground	Ground	Digital Ground
2	N.C.	-	-	No internal connection. Pin may be grounded if desired.
3	SCL		Tri-stated	I ² C Serial Clock Input
4	SDA	I/O	Tri-stated	I ² C Serial Data Input/Output
5	ADDR	I	Tri-stated	I ² C Address Select
6	XO	AO	Floating	XTAL Out
7	XI (MCLK)	AI	Floating	XTAL / MCLK In
8	N.C.	-	-	No internal connection. Pin may be grounded if desired.
9	DACR	AO	Driven to ground	Differential Positive Analog Output Right
10	DACRB	AO	Driven to ground	Differential Negative Analog Output Right
11	N.C.	-	-	No internal connection. Pin may be grounded if desired.
12	AGND	Ground	Ground	Analog Ground
13	DACL	AO	Driven to ground	Differential Positive Analog Output Left
14	DACLB	AO	Driven to ground	Differential Negative Analog Output Left
15	N.C.	-	-	No internal connection. Pin may be grounded if desired.
16	AVCCDAC	Power	Power	Analog AVCC for DAC
17	VCCA	Power	Power	Analog +1.8V or +3.3V for OSC
18	DVCC	Power	Power	Digital +1.8V to +3.3V
19	N.C.	-	-	No internal connection. Pin may be grounded if desired.
20	DGND	Ground	Ground	Digital Ground
21	DVDD	Power	Power	Digital Core Voltage, nominally +1.2V, is supplied by a regulator from DVCC. DVDD must be decoupled with a minimum 4.7 μ F capacitor to DGND for stable operation. DVDD needs to be externally supplied for high XI / MCLK frequency. Please refer to the section about the DVDD supply on page 7 for additional information.
22	N.C.	-	-	No internal connection. Pin may be grounded if desired.
23	N.C.	-	-	No internal connection. Pin may be grounded if desired.
24	GPIO1	I/O	Tri-stated	GPIO 1
25	DATA2	I	Tri-stated	DSD Data2 (R) or PCM Data CH1/CH2 or SPDIF Input 2
26	DATA1	I/O	Tri-stated	Master mode off: Input for DSD Data1 (L) or PCM Frame Clock or SPDIF Input 3 Master mode on: Output for PCM Frame Clock
27	DATA_CLK	I/O	Tri-stated	Master mode off: Input for PCM Bit Clock or DSD Bit Clock or SPDIF Input 1 Master mode on: Output for PCM Bit Clock
28	RESETB	I	Tri-stated	Master Reset / Power Down (active low)
Exposed Pad	DGND	Ground	Ground	Digital Ground. Connect the Exposed Pad to DGND

Notes:

- There are 7 N.C. (No Connect) pins. If desired, these pins can be connected to ground on the PCB to strengthen the otherwise isolated pin pads.
- The exposed pad must be connected to digital ground.

FUNCTIONAL DESCRIPTION

NOTATATIONS for Sampling Rates

Mode	fs (target sample rate)	FSR (raw sample rate)		
DSD	DATA_CLK / 64	DSD data rate		
Serial (PCM) Normal Mode	Frame Clock Rate	Frame Clock Rate		
Serial (PCM) OSF Bypass Mode	Frame Clock Rate / 8	Frame Clock Rate		
SPDIF	SPDIF Sampling Rate	SPDIF Sampling Rate		

PCM, SPDIF and DSD Pin Connections

PCM Audio Format

Notes:

XI clock (MCLK) must be > 192 x FSR when using PCM input (normal mode), or 128 x FSR (synchronous MCLK). XI clock (MCLK) must be > 24 x FSR when using PCM input (OSF bypass mode).

Pin Name	Description
DATA1	Frame clock
DATA2	2-channel PCM serial data
DATA_CLK	Bit clock for PCM audio format

Master Mode (32-bit data only)

When Register #1 'input_select' is set to 2'd0 (I²S) and 'i2s_length' is set to 2'd2 (32-bit), the DAC can become a master for Bit Clock and Frame Clock by setting Register #9 'master clock enable' to 1'b1. The Bit Clock frequency can be configured to MCLK / 4, MCLK / 8 or MCLK / 16 by setting Register #9 'clock divider select' to 2'b00, 2'b01 or 2'b10. GPIO 1 can be configured to output MCLK by setting Register #8 gpio1_cfg to 4'd3.

:	SLAVE PCM MODE	N	MASTER PCM MOD	ЭE
	ES901xK2M		ES901xK2M	
LRCLK (Frame Clock)	DATA_CLK DATA1 DATA2	LRCLK (Frame Clock)	Data_Clk Data1 Data2 GPI01	

SPDIF Audio Formant

Note: XI clock (MCLK) must be > 386 x FSR when using SPDIF input.

Up to four SPDIF inputs can be connected to the 4-to-1 mux, selectable via register "spdif_sel". SPDIF can also be sourced from a GPIO pin configured as input.

Pin Name	Description
GPIO1	SPDIF input 4
DATA1	SPDIF input 3
DATA2	SPDIF input 2
DATA_CLK	SPDIF input 1

DSD Audio Format

Note: XI clock (MCLK) must be > 3 x FSR when using DSD input.

Pin Name	Description
DATA[1:2]	2-channel DSD data input
DATA_CLK	Bit clock for DSD data input

FEATURE DESCRIPTION

Soft Mute

When Mute is asserted the output signal will ramp to the $-\infty$ level. When Mute is reset the attenuation level will ramp back up to the previous level set by the volume control register. Asserting Mute will not change the value of the volume control register. The ramp rate is 0.0078125 x fs / 2^(vol_rate-5) dB/s.

Automute

During an automute condition the ramping of the volume of each DAC to $-\infty$ can now be programmatically enabled or disabled.

- In PCM serial mode, "AUTOMUTE" will become active once the audio data is continuously below the threshold set by <Register Automute_lev>, for a length of time defined by 2096896 / (<Register#4> x 64 x fs) seconds.
- In SPDIF mode, "AUTOMUTE" will become active once the audio data is continuously below the threshold set by <Register Automute_lev>, for a length of time defined by 2096896 / (<Register#4> x (64 x fs) seconds.
- In the DSD Mode, "AUTOMUTE" will become active when any 8 consecutive values in the DSD stream have as many 1's and 0's for a length of time defined by 2096896 / (<Register Automute_time> x DATA_CLK) seconds. The following table summarizes the conditions.

Mode	Detection Condition	Time
РСМ	Data is continuously lower than <register automute_lev=""></register>	2096896 / (<register automute_time=""> x 64 x fs)</register>
SPDIF	Data is continuously lower than <register automute_lev=""></register>	2096896 / (<register automute_time=""> x (64 x fs))</register>
DSD	Equal number of 1s and 0s in every 8 bits of data	2096896 / (<register automute_time=""> x DATA_CLK)</register>

Volume Control

Each output channel has its own attenuation circuit. The attenuation for each channel is controlled independently. Each channel can be attenuated from 0dB to –127dB in 0.5dB steps.

Each 0.5dB step transition takes up to 64 intermediate levels, depending on the vol_rate register setting. The result being that the level changes are done using small enough steps so that no switching noise occurs during the transition of the volume control. When a new volume level is set, the attenuation circuit will ramp softly to the new level.

Master Trim

The master trim sets the 0dB reference level for the volume control of each DAC. The master trim is programmable via registers 17-20 and is a 32bit signed number. Therefore it should never exceed 32'h7FFFFFFF (as this is full-scale signed).

All Mono Mode

An all mono mode where all DACs are driven from the same source is supported. This can be useful for high-end audio applications. The source data for all DACs can be programmatically configured to be either CH1 or CH2.

De-emphasis

The de-emphasis feature is included for audio data that has utilized the 50/15µs pre-emphasis for noise reduction. There are three de-emphasis filters, one for 32kHz, one for 44.1kHz, and one for 48kHz.

SPDIF Data Select

An SPDIF source multiplexer allows for up to four SPDIF sources to be connected to the data pins. An internal programmable register (spdif_sel) is used to select the appropriate data or GPIO pin to decode. SPDIF can also be sourced from GPIO pin configured as input.

System Clock (XI / MCLK)

A system clock is required for proper operation of the digital filters and modulation circuitry. See p.28, Note 2 for the maximum MCLK frequencies supported. The minimum system clock frequency must also satisfy:

Data Type	Minimum MCLK Frequency	Note
DSD Data	MCLK > 3 x FSR , FSR = 2.8224MHz (x 1, 2 or 4)	The maximum FSR
Serial Normal Mode	MCLK > 192 x FSR, FSR ≤ 384kHz or MCLK = 128 x FSR (synchronous MCLK) with FSR ≤ 384kHz	frequency is further limited by the maximum MCLK
Serial OSF Bypass Mode	MCLK > 24 x FSR, FSR ≤ 1.536MHz	frequencies supported as shown
SPDIF Data	MCLK > 386 x FSR, FSR \leq 200kHz	p.28, Note 2.

Data Clock

DATA_CLOCK must be (2 x i2s_length) x FSR for SERIAL, and FSR for DSD modes. For SPDIF mode, this pin is used for SPDIF input. This pin should be pulled low if not used.

Built-in Digital Filters

Three digital filters (fast roll-off, slow roll-off and minimum phase filters) are included for PCM data. See 'PCM Filter Characteristics' for more information.

Standby Mode

For lowest power consumption, the following sequence should be performed to enter stand-by mode:

- Set the soft start bit in register 14 to 1'b0 to ramp the DAC outputs (DACL, DACLB, DACR, DACRB) to ground.
- RESETB pin should be brought to low digital level to:
 - Shut off the DACs, Oscillator and internal regulator.
 - Force digital I/O pins (DATA_CLK, DATA1, GPIO1, SDA) into tri-state mode
 - o Reset all registers to default states
- If XI/MCLK is supplied externally, it should be stopped at logic low level
- If DVDD is supplied by an external regulator, it should be shutdown during standby

To resume from standby mode, bring RESETB to high digital level and reinitialize all registers.

DVDD Supply

7

The ES9016K2M is equipped with an internal, regulated DVDD supply powered from DVCC. The internal DVDD regulator must be decoupled to DGND with a 4.7μ F minimum capacitor for stable operation. Recommended capacitor for decoupling DVDD is a 4.7μ F ±20%, X5R 6.3V 0402, e.g. TDK part number C1005X5R0J475M050BC or similar.

- The internal DVDD should be used except under the following conditions:
 1. PCM (SPDIF, I²S with OSF Bypass off or on): MCLK > 50MHz or FSR > 192kHz
- PCM (SPDIF, I²S with OSF Bypass off or on): MCLK > 50MHz or FSR >
 DSD: MCLK > 50MHz or FSR > 11.2MHz
- Internal DVDD may be used up to the maximum supported MCLK frequencies specified on p.28, Note 2. An External DVDD (+1.3V) supply must be used above those frequencies. The external supply voltage must be greater than the internal supply of +1.2V so the internal supply is disabled.

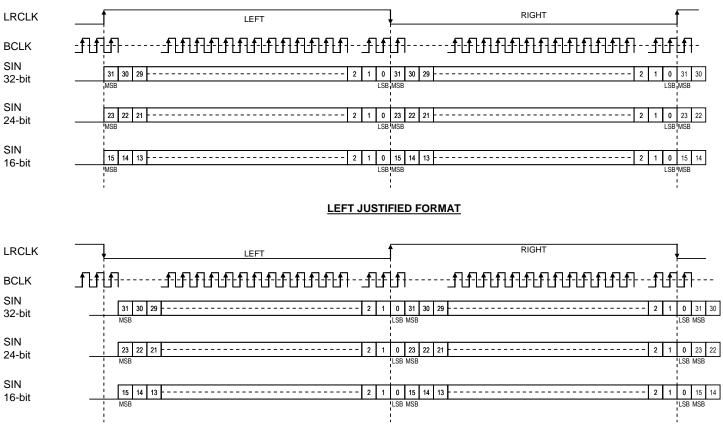
Programmable FIR filter

A two stage interpolating FIR design is used. The interpolating FIR filter is generated using MATLAB, and can then be downloaded using a custom C code.

Example Source Code for Loading a Filter

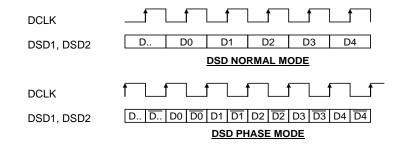
```
// only accept 128 or 16 coefficients
// Note: The coefficients must be quantized to 24 bits for this method!
// Note: Stage 1 consists of 128 values (0-127 being the coefficients)
// Note: Stage 2 consists of 16 values (0-13 being the coefficients, 14-15 are zeros)
// Note: Stage 2 is symmetric about coefficient 13. See the example filters for more information.
byte reg26 = (byte)(coeffs.Count == 128 ? 0 : 128);
for (int i = 0; i < coeffs.Count; i++)</pre>
{
    // stage 1 contains 128 coefficients, while stage 2 contains 16 coefficients
   registers.WriteRegister(26, (byte)(reg26 + i));
   // write the coefficient data
   registers.WriteRegister(27, (byte)(coeffs[i] & 0xff));
   registers.WriteRegister(28, (byte)((coeffs[i] >> 8) & 0xff));
   registers.WriteRegister(29, (byte)((coeffs[i] >> 16) & 0xff));
   registers.WriteRegister(30, 0x02); // set the write enable bit
}
// disable the write enable bit when we're done
registers.WriteRegister(30, (byte)(setEvenBit ? 0x04 : 0x00));
```

OSF Bypass


The oversampling FIR filter can be bypassed, sourcing data directly into the IIR filter. ESS recommends using 8 x FSR as the input. For example, an external signal at 44.1kHz can be oversampled externally to 8 x 44.1kHz = 352.8kHz and then applied to the serial decoder in either I²S or LJ format. The maximum sample rate that can be applied is 1.536MHz (8 x 192kHz).

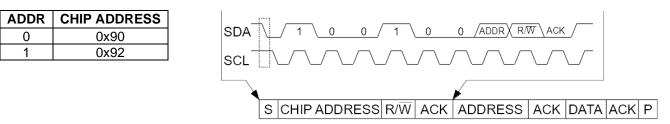
3.2

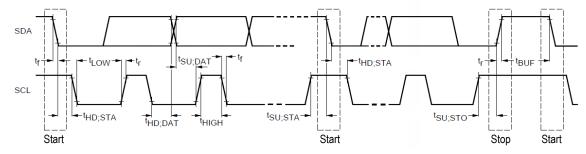
Audio Interface Formats


Several interface formats are provided so that direct connection to common audio processors is possible. The available formats and their accompanying diagrams are listed in the following table. The audio interface format can be set by programming the registers.

I2S FORMAT

Note: for Left-Justified and I²S formats, the following number of BCLKs is present per LRCLK frame (left plus right channels):


- 16-bit mode: 32 BCLKs
- 24-bit mode: 48 BCLKs
- 32-bit mode: 64 BCLKs


SERIAL CONTROL INTERFACE

The registers inside the chip are programmed via an I²C interface. The diagram below shows the timing for this interface. The chip address can be set to 2 different settings via the "ADDR" pin. The table below summarizes this.

Notes:

- 1. The "ADDR" pin is used to create the CHIP ADDRESS. (0x90, 0x92)
- 2. The first byte after the chip address is the "ADDRESS" this is the register address.
- 3. The second byte after the CHIP ADDRESS is the "DATA" this is the data to be programmed into the register at the previous "ADDRESS".

Parameter	Symbol	Standa	rd-Mode	Fast-	Mode	Unit
Farameter	Symbol	MIN	MAX	MIN	MAX	Unit
SCL Clock Frequency	fscl	0	100	0	400	kHz
START condition hold time	thd,sta	4.0	-	0.6	-	μs
LOW period of SCL	t _{LOW}	4.7	-	1.3	-	μs
HIGH period of SCL	t _{ніGH}	4.0	-	0.6	-	μs
START condition setup time (repeat)	tsu,sta	4.7	-	0.6	-	μs
SDA hold time from SCL falling	thd,dat	0.3	-	0.3	-	μs
SDA setup time from SCL rising	t _{su,dat}	250	-	100	-	ns
Rise time of SDA and SCL	tr	-	1000		300	ns
Fall time of SDA and SCL	t _f	-	300		300	ns
STOP condition setup time	tsu,sto	4	-	0.6	-	μs
Bus free-time between transmissions	t _{BUF}	4.7	-	1.3	-	μs
Capacitive load for each bus line	Cb	-	400	-	400	pF

New product version is available in ES9020Q

ES9016K2M Datasheet

REGISTER MAP

LDMCH2031 L <thl< th=""> <thl< th=""> <thl< th=""> <thl< th="" tr<=""><th>Address</th><th>Register</th><th>D7 (MSB)</th><th>D6</th><th>D5</th><th>D4</th><th>D3</th><th>D2</th><th>D1</th><th>D0 (LSB)</th></thl<></thl<></thl<></thl<>	Address	Register	D7 (MSB)	D6	D5	D4	D3	D2	D1	D0 (LSB)				
01/000 SYSTEM SETTINGS OSC DRV RESERVED SOFT AR 11/001 MPUT IZS_MODE AUTO_INPUT_SELECT INPUT_SELECT INPUT_SELECT 12/002 RESERVED RESERVED RESERVED AUTOMUTE_LEVEL AUTOMUTE_LEVEL 16/004 AUTOMUTE_TIME AUTOMUTE_TIME AUTOMUTE_LEVEL AUTOMUTE_LEVEL VOL_RATE 16/006 CONTROL 3.8 SPDIF_AUTO DEEMPH SPDIF_AUTO DEEMPH SERVED IR_VRR MUTE 17/0007 SETTINSS RESERVED FLTER_SHAPE RESERVED IR_VRR MUTE 10/000A CONTROL 3.8 SPDIF_AUTO DEEMPH SPDIF_SEL RESERVED IR_VRR MUTE 10/000A RESERVED RESERVED RESERVED STOP_DV STOP_DV 10/000A MASTER_MODE MASTER_CLK CLOCK_UNDER_SELECT STORC STOP_DV STOP_DV 11/000B MASTER_MODE BYPASS_THD RESERVED SOFT_START SOFT_START SOFT_START SOFT_START SOFT_START SOFT_ST	(Dec/Hex)	Register	51 (1105)	50	50	54	50	52	51	50 (205)				
1/ 0x01 ONFIGURATION 12.LENGTH 12.S.MODE AUTO_INPUT_SELECT INPUT_SELECT 2/0020 RESERVED RESERVED RESERVED RESERVED RESERVED 4/0041 RESERVED RESERVED RESERVED RESERVED RESERVED 6/0056 RESERVED RESERVED RESERVED RESERVED RESERVED 6/0056 SOFT VOLUME DE-EMMPAISIS OBEMPH BPTABS DEEMPH,SEL RESERVED IIR_WR MUTE 6/0056 CONFGURATION RESERVED FILTER_SHAPE RESERVED GPIO_CFG MUTE 10/0040 MASTER MODE RESERVED RESERVED GPIO_CFG MUTE 10/0040 MASTER MODE MASTER CLK CUCK_DVIDER_SELECT MODE STOR														
17/030 CONFIGURATION LS_LENG IF IS_MOLE AUTOMUTE_INPOL_SELECT INPUT_SELECT INPUT_SELECT 37/033 RESERVED RESERVED RESERVED RESERVED RESERVED 47/034 AUTOMUTE_INE AUTOMUTE_INE AUTOMUTE_INE AUTOMUTE_INE 57/035 AUTOMUTE_INE AUTOMUTE_INE AUTOMUTE_INE AUTOMUTE_INE 67/036 AUTOMUTE_INE AUTOMUTE_INE AUTOMUTE_INE AUTOMUTE_INE 67/037 GENERAL SETINAS RESERVED PILTER_SHAPE RESERVED IIR_WR MUTE 87/038 RESERVED PILTER_SHAPE RESERVED IIR_WR MUTE 87/039 RESERVED PILTER_SHAPE RESERVED IIR_WR MUTE 87/0307 GENERAL RESERVED RESERVED GPIO_CCG 97/0307 GENERAL RESERVED RESERVED STOP_DIV 111/0308 MSTER NODE RESERVED STOP_DIV STOP_DIV 111/0308 MAPPING RESERVED SPIF_SEL SPIF_SEL SPIND 111/0308 MAPPING RESERVED SPIF_SEL VOLUME 1 111/0308 SPIT_SEL SPIF_SEL MUTE_ON SPIF_SEL 111/0308 RESERVED	0 / 0x00							USC_DKV RESERVED SUF1_RES						
37/0303 RESERVED NEESERVED 37/0303 RESERVED AUTOMUTE AUTOMUTE AUTOMUTE 47/0341 AUTOMUTE LOVENDACK DEEMPH3 AUTOMUTE_LEVEL VOL_RATE 67/0305 CALTONUTE LOVENDACK DEEMPH3 DEEMPH3 DEEMPH3 VOL_RATE 77/0407 GENERAL SETTINGS RESERVED FILTER_SHAPE RESERVED IIR_WR MUTE 87/0408 OPENPH383 COLOCK_DIVIDER_SEL RESERVED RESERVED CPICANDO MUTE 97/0407 GENERAL SETTINGS RESERVED RESERVED RESERVED GPIO1_CFG MUTE 97/0409 RESERVED MASTER_CLK CLOCK_DIVIDER_SELC SYMAP CH2_SEL CH1_SE 10/040A MASTER_CLK CLOCK_DIVIDER_SELC SYMAP CH2_SEL CH1_SE CH1_SE 11/040B MAPHNG RESERVED DPL_BW_I2S DPL_BW_I2S DPL_BW_I2S DPL_BW_I2S DPL_BW_I2S DPL_BW_I2S CH1_SE CH1_SE 11/040B MAPHNG RESERVED DPL_BW_I2S GPICAND RESERVED SMAP CH2_SE		CONFIGURATION	I2S_LE	NGTH	AUTO_INPUT_SELECT INPUT_SELECT									
47.06.04 AUTOMUTE TIME AUTOMUTE AUTOMUTE AUTOMUTE AUTOMUTE AUTOMUTE AUTOMUTE LEVEL AUTOMUTE LEVEL 67.06.05 AUTOMUTE TIME AUTOMUTE AUTOMUTE AUTOMUTE AUTOMUTE AUTOMUTE LEVEL RESERVED VOL_RATE 67.06.05 SOFT VOLUME AUTOMUTE AUTOMUTE AUTOMUTE AUTOMUTE AUTOMUTE LEVEL SOFT VOLUME AUTOMUTE AU														
5 / 0x05 AUTOMUTE LEVEL AUTOMUTE LOOPACK AUTOMUTE LOOPACK AUTOMUTE LEVEL 7 / 0x07 GENERAL SERVED RESERVED PILTER, SHAPE RESERVED III., WR MUTE 9 / 0x08 RESERVED RESERVED RESERVED MASTER MODE CONFIGURATION MASTER AUDO LEVELABLE SPDI-SEL SPDI-SEL SPDI-SEL SPDI-SEL SPDI-SEL SPDI-SEL CH2_ANALOG CH2_SEL CH1_S 10 / 0x00 MASTER MODE SETTINGS SOFT_START SOFT_START SOFT_START MUTE-ON LOOK SOFT_START_TIME DEL_MUBE 2 SOFT_START_TIME SOFT_START_TIME SOFT_START_TIME SOFT_START_TIME SOFT_START_TIME SOFT_START_TIME SOFT_START_TIME														
5 / UOD LEVEL IOOPBACK CONTROLS SPDIF (LIVEL) IOOPBACK VOL_RATE 6 / UOD SOTT VOLUME CONTROLS SPDIF (LIVEL) DEEMPH SPDIF (LIVEL) DEEMPH RESERVED FILTER_SHAPE RESERVED III_WR MUTE 7 / 0x07 GENERAL SETTINGS RESERVED FILTER_SHAPE RESERVED III_WR MUTE 8 / 0x09 REVEND RESERVED FILTER_SHAPE RESERVED GPI01_CFG 9 / 0x09 REVEND RESERVED SVEC GPI01_CFG GPI01_CFG 9 / 0x09 REVEND MAPPING RESERVED SVEC STOP_DIV GPI01_CFG 10 / 0x04 MAPPING RESERVED SVEC SVEC SVEC SVEC CH1_S 11 / 0x06 MAPPING RESERVED BYPASS_THD VEL_BW_DSD CH2_SANLOG CH1_SANLOG 13 / 0x00 COMPENSATION RESERVED BYPASS_THAP VOLUME 1 SOFT_START SOFT_START SOFT_START SOFT_START SOFT_START SOFT_START SOFT_START SOFT_START SOFT	4 / 0x04					AUTON	MUTE_TIME							
6 / 0x0db CONTROL 3.8 DECEMPH 3SI DECEMPH 3SI D	5 / 0x05	_LEVEL					AUTOMUTE_LEV	EL						
17/00// 8/008 SETINGS GPIO CONFIGURATION RESERVED III.E.WR IMUTE 8/008 GPIO CONFIGURATION RESERVED GPIO1_CFG GPIO1_CFG 9/0080 RESERVED RESERVED GPIO1_CFG GPIO1_CFG 10/0x0A MASTER_CLK CLOCK_DIVIDER_SELECT SYNC_ MODE STOP_DIV 11/0x0B CHANNEL MAPPING RESERVED SYNC_ SWAP SYNC_ SWAP SYNC_ SWAP GPIO_IOFG 12/0x0C DPLL_NSRC DPLL_BW_J2S DPLL_BW_DSD DPLL_BW_DSD 13/0x0D COMPENSATION SETTINGS RESERVED BYPASS_THD RESERVED 14/0x0E SETTINGS SOFT_START SOFT_START_ INC_START SOFT_START_ INC_START SOFT_START_TIME 15/0x0F VOLUME 1 VOLUME 2 VOLUME 2 VOLUME 2 17/0x11 GPIO_INPUT SELECTION & OSF SETTINGS SOFT_START_ INC_START_SOFT_START SOFT_START_ INC_START_SOFT_START_ INC_START_SOFT_START_ INC_START_SOFT_START_ INC_START_SOFT_START_ INC_START_SOFT_ INC_START_SOFT_START_ INC_START_SOFT_SOFT_START_ INC_START_SOFT_START_ INC_START_SOFT_START_ INC_START_SOFT_ INC_START_SOFT_ INC_START_SOFT_SOFT_START_ INC_START_SOFT_SOFT_START_ INC_START_SOFT_SOFT_START_ INC_START_SOFT_SOFT_SOFT_SOFT_SOFT_SOFT_SOFT_SOF	6 / 0x06	CONTROL 3 & DE-EMPHASIS			DEEM	PH_SEL	RESERVED		VOL_RATE					
87 0003 CONFIGURATION RESERVED GP/01_CP3 97 0003 RESERVED RESERVED STOP_DIV 10 0x0A MASTER MODE OCNTROL LENABLE LOCK_DIVIDER_SELECT SYNC MODE STOP_DIV 11 0x0B CHANNEL MAPPING RESERVED SPDIF_SEL CHZ_ANALOG SWAP CH1_ANALOG SWAP CH2_SEL CH1_SKL 12 0x0C DPLLASRC DPLL_BW_I2S DPLL_BW_DSD SOFT_START CH1_SKL CH1_SKL 13 0x0D CMFENSATION RESERVED BYPASS_THD RESERVED SOFT_START MUTE_ON 14 0x0E SOFT_START SOFT_START MUTE_ON SOFT_START_TIME SOFT_START_TIME 15 0x0F VOLUME 1 SOFT_START SOFT_START MUTE_ON SOFT_START_TIME 16 0x10 VOLUME 2 VOLUME 2 VOLUME 2 SOFT_START_TIME 21 0x15 GPIO_INPUT_SEL2 GPIO_INPUT_SEL1 RESERVED BYPASS_IR 18 0x12 GPIO_INPUT_SEL2 GPIO_INPUT_SEL1 RESERVED BYPASS_IR 22 0x14 GPIO_INPUT_SEL2 GPIO_INPUT_SEL1 RESERVED BYPASS_IR 22 0x14 GPIO_INPUT_SEL2 GPIO_OMP_C2 GPIO_INPUT_SEL5 GPIO_INPUT_SEL5 22 0x14 GPIOGRAMMABLE _STAGE PROG_COEFF_CENTS	7 / 0x07	SETTINGS	RESERVED	FILTER_	SHAPE	RESERVED	IIR_	WR	Ν	IUTE				
10 / 0x0A MASTER MODE CONTROL MASTER ADDE CONTROL MASTER ADDE CONTROL MASTER ADDE CANANLE MAPPING MASTER ADDE RESERVED STYNC_ SWAP STOP_DIV 11 / 0x0B CHANNEL MAPPING RESERVED SPDIF_SEL CH2_ANALOG SWAP CH1_ANALOG SWAP CH1_ANALOG SWAP CH1_SWADC CH2_SEL CH1_S 12 / 0x0C DPLLASRC SETTINGS DPLL_BW_I2S DPLL_BW_DSD CH2_SEL CH1_S 13 / 0x0D THD COMPENSATION RESERVED BYPASS_THD RESERVED SOFT_START SOFT_START SOFT_START SOFT_START SOFT_START SOFT_START MASTER TRIM 16 / 0x10 VOLUME 1 SOFT_START SOFT_START SOFT_START MASTER TRIM MASTER TRIM 19 / 0x13 MASTER TRIM SELECTION & OSF GPIO_INPUT_SEL2 GPIO_INPUT_SEL1 RESERVED BYPASS_IIR RESERVED BYPASS_IIR 22 / 0x17 COMPENSATION COMPENSATION COMPENSATION THD_COMP_C2 STAGE STAGE 22 / 0x17 COMPENSATION COMPENSATION STAGE STAGE PROG_COEFF_ADDR COEFF	8 / 0x08			RESER	/ED			GPIO1_	CFG					
101000A CONTROL _ENABLE CLOCUL/DIVIDE_SELE MODE STOT_DIV 111/0x0B MAPPING RESERVED SPDIF_SEL CH2_ANALOG CH1_ANALOG CH2_SEL CH1_ANALOG 12/0x0C SETTINGS DPLL_BW_I2S DPLL_BW_DSD CH2_ANALOG CH1_ANALOG CH1_S 13/0x0D THD RESERVED BYPASS_THD RESERVED DPLL_BW_DSD 14/0x0E SOFT_START SOFT_START SOFT_START SOFT_START SOFT_START 15/0x0F VOLUME 1 SOFT_START SOFT_START SOFT_START SOFT_START 15/0x0F VOLUME 2 UOLUME 2 VOLUME 2 INTO SOFT_START 19/0x13 MASTER TRIM MASTER_TRIM MASTER_TRIM INTO 20/0x14 GPIO INPUT GPIO_INPUT_SEL2 GPIO_INPUT_SEL1 RESERVED BYPASS_IIR RESERVED 22/0x16 2X0 Mt3 SRD HARMONIC COMPENSATION THD_COMP_C3 INTO_COMPENSATION 22/0x16 2X0 Mt3 RESERVED FROG_COEFF_ADDR INTO_COEFF. 22/0x16 2X0 Mt3 RESERVED PROG_COEFF_ADDR INTO_COEFF. 22/0x15 PROG_COEFF PROG_COEFF_ADDR INTO_UTE INTO_UTE 23/0x16 PROGRAMM	9 / 0x09	RESERVED				RESERVED	FOR REVISION V							
11 / 0x0B CHANNEL MAPPING RESERVED SPDIF_SEL CH2_ANALOG _SWAP CH2_ANALOG _SWAP CH2_SEL CH1_S 12 / 0x0C DPLLASRC SETTINGS DPLLBW_I2S DPLLBW_DSD DPLLBW_DSD DPLLBW_DSD CH2_ANALOG _SWAP CH2_ANALOG _SWAP CH2_ANALOG _SWAP CH2_SL CH1_SL	10 / 0x0A			CLOCK_DIVID	ER_SELECT			STOP_	_DIV					
12 / 0x0C DPLLASRC SETTINGS DPLL_BW_I2S DPLL_BW_DSD 13 / 0x0D THD COMPENSATION RESERVED BYPASS_THD RESERVED 14 / 0x0E SOFT_START SOFT_START SOFT_START MUTE_ON JON_LOCK SOFT_START_TIME 14 / 0x0E SOFT_START SOFT_START SOFT_START SOFT_START_ON SOFT_START_TIME 16 / 0x10 VOLUME 1 VOLUME 2 VOLUME 2 VOLUME 2 17 / 0x11 IB/0x12 MASTER TRIM MASTER_TRIM MASTER_TRIM 20 / 0x14 GPIO INPUT_SEL2 GPIO_INPUT_SEL1 RESERVED BYPASS_IIR RESERVED BYPASS_ BYPASS_ BYPASS BYPASS_ BYPASS_ 22 / 0x16 SELECTION & OSF SELECTION & OSF GPIO_INPUT_SEL2 GPIO_INPUT_SEL1 RESERVED BYPASS_IIR RESERVED BYPASS_ BYPASS_ BYPASS_ BYPASS BYPASS_IIR RESERVED BYPASS_ BYPASS_IIR RESERVED BYPASS_ BYPASS_ BYPASS_ BYPASS_IIR RESERVED BYPASS_IIR RESERVED BYPASS_ BYPASS_ BYPASS_IIR RESERVED BYPASS_IIR RESERVED BYPASS_ BYPASS_ BYPASS_IIR BYPASS_IIR RESERVED BYPASS_ BYPASS_ BYPASS_IIR RESERVED BYPASS_ BYPASS_ BYPASS_ BYPASS_IIR RESERVED BYPASS_ BYPASS_ BYPASS_ BYPASS_ BYPASS_ BYPASS_ BYPASS_ BYPASS_IIR RESERVED BYPASS_ BYPASS_ BYPASS_ BYPASS_ BYPASS_ BYPASS_ BYPASS_ BYPASS_ BYPA	11 / 0x0B		RESERVED		SPDIF_SEL	•			CH2_SEL	CH1_SEL				
13 / 0x0D THD RESERVED BYPASS_THD RESERVED 14 / 0x0E SOFT START SOFT_START SOFT_START ON_LOCK SOFT_START_TIME 15 / 0x0F VOLUME 1 SOFT_START SOFT_START LOCK VOLUME 1 16 / 0x10 VOLUME 2 VOLUME 2 VOLUME 2 17 / 0x11 MASTER TRIM MASTER TRIM MASTER_TRIM 19 / 0x13 MASTER TRIM MASTER_TRIM MASTER_TRIM 20 / 0x14 GPIO INPUT SELECTION & OSF GPIO_INPUT_SEL2 GPIO_INPUT_SEL1 RESERVED BYPASS_IIR RESERVED BYPASS_IIR 22 / 0x16 2ND HARMONIC COMPENSATION THD_COMP_C2 UOLONPENSATION THD_COMP_C2 23 / 0x17 COEFFICIENTS THD_COMP_C3 THD_COMP_C3 EVEN_STAGE2 PROG_COEFF_ADDR 22 / 0x18 3RD HARMONIC THD_COMP_C3 EVEN_STAGE2 PROG_COEFF_COEFF PROG_COEFF_COEFF 29 / 0x10 COEFFICIENT FILTER PROG_COEFF PROG_COEFF_COEFF PROG_COEFF_COEFF_COEFF 29 / 0x10 COEFFICIENT RESERVED RESERVED COEFFICIENT COEFFICIENT 29 / 0x10 COEFFICIENT RESERVED COEFFICIENT COEFFICIENT COEFFICIENT 29 / 0x10 COEF	12 / 0x0C	DPLL/ASRC		DPLL_BW	/_l2S				V_DSD					
14 / 0x0E SOFT START SOFT_START MUTE_ON _ON_LOCK SOFT_START_TIME 15 / 0x0F VOLUME 1 VOLUME 1 VOLUME 1 16 / 0x10 VOLUME 2 VOLUME 2 17 / 0x11 MASTER TRIM MASTER_TRIM 18 / 0x12 MASTER TRIM MASTER_TRIM 20 / 0x14 GPIO INPUT GPIO_INPUT_SEL2 GPIO_INPUT_SEL1 RESERVED 21 / 0x15 SELECTION & 0SF GPIO_INPUT_SEL2 GPIO_INPUT_SEL1 RESERVED BYPASS_ 22 / 0x16 ZDH HARMONIC COMPENSATION THD_COMP_C2 23 / 0x17 COEFFICIENTS THD_COMP_C3 26 / 0x1A PROGRAMMABLE STAGE PROG_COEFF_ADDR 27 / 0x1B PROG_COEFF PROG_COEFF_ADDR 28 / 0x1C FILTER ADDRESS STAGE PROG 29 / 0x1D COEFFICIENTS COEFFICIENTS COEFFICIENT 29 / 0x1D COEFFICIENTS STAGE PROG_COEFF 29 / 0x1D COEFFICIENT RESERVED EVEN_STAGE2 PROG 29 / 0x1D COEFFICIENT RESERVED COEFFICIENT COEFFICIENT 29 / 0x1D COEFFICIENT RESERVED COEFFICIENT COEFFICIENT 29 / 0x1D COEFFICIENT RESERVED COEFFICIENT<	13 / 0x0D	THD	RESERVED	BYPASS_THD			RES	ERVED						
15/0x0F VOLUME 1 VOLUME 1 16/0x10 VOLUME 2 VOLUME 2 17/0x11 MASTER TRIM MASTER_TRIM 19/0x13 MASTER TRIM MASTER_TRIM 20/0x14 GPIO INPUT SELECTION & OSF 21/0x15 SELECTION & OSF GPIO_INPUT_SEL2 21/0x16 ZND HARMONIC COMPENSATION 22/0x16 ZND HARMONIC THD_COMP_C2 COMPENSATION THD_COMP_C3 22/0x16 ZND HARMONIC COMPENSATION THD_COMP_C3 25/0x19 COMPENSATION COMPENSATION THD_COMP_C3 26/0x1A PROGRAMMABLE FILTER ADDRESS _STAGE 28/0x1C FILTER 29/0x10 COEFFICIENTS 29/0x10 COEFFICIENT 29/0x10 COEFFICIENT 29/0x10 COEFFICIENT 29/0x10 COEFFICIENT 30/0x14 PROGRAMMABLE PROGRAMMABLE RESERVED RESERVED RESERVED 6/0x41 GPIO STATUS 66/0x42 GPIO STATUS 67/0x43 DPLL RATIO 68/0x44 DPLL RATIO	14 / 0x0E	SOFT START	SOFT_START				:	SOFT_START_TIME						
17/0x11 MASTER TRIM MASTER TRIM 19/0x13 GPIO_INPUT GPIO_INPUT 20/0x14 GPIO_INPUT GPIO_INPUT_SEL2 GPIO_INPUT_SEL1 RESERVED BYPASS_IIR RESERVED BYPASS_IIR 22/0x16 2ND HARMONIC COMPENSATION THD_COMP_C2 THD_COMP_C2 23/0x17 COMPENSATION THD_COMP_C3 COMPENSATION COMPENSATION 25/0x18 380 HARMONIC COMPENSATION THD_COMP_C3 COMPC_3 26/0x14 PROGRAMMABLE PROG_COEFF PROG_COEFF_ADDR 21/0x18 PROGRAMMABLE 28/0x10 FILTER ADDRESS STAGE PROG_COEFF PROG_COEFF PROG_COEFF 29/0x10 COEFFICIENTS STAGE PROG_COEFF PROG_COEFF PROG_COEFF 29/0x10 COEFFICIENT RESERVED RESERVED PROG_COEFF PROG_COEFF 29/0x10 COEFFICIENT STAGE2 PROG_COEFF PROG_COEFF COEFFICIENT 30/0x11 PROGRAMMABLE RESERVED RESERVED CHIP_ID AUTOMUTE COEFF_COEFF_VE COEFF_COEFF_VE COEFF_COEFF_VE COEFF_COEFF_VE COEFF_COEFF_VE	15 / 0x0F					VO	LUME 1							
18/0x12 19/0x13 MASTER TRIM MASTER TRIM 20/0x14 GPIO INPUT SELECION & OSF BYPASS GPIO_INPUT_SEL2 GPIO_INPUT_SEL1 RESERVED BYPASS_IIR RESERVED BYPASS_IIR 22/0x16 2ND HARMONIC COMPENSATION COMPENSATION 23/0x17 COMPENSATION COMPENSATION COMPENSATION COMPENSATION COMPENSATION COMPENSATION COMPENSATION COMPENSATION COMPENSATION COFFICIENTS THD_COMP_C2 THD_COMP_C3 24/0x18 3RD HARMONIC COMPENSATION COFFICIENTS THD_COMP_C3 THD_COMP_C4 26/0x1A PROGRAMMABLE FILTER ADDRESS PROG_COEFF _STAGE PROG_COEFF_ADDR 27/0x18 PROGRAMMABLE FILTER CONTROL RESERVED PROG_COEFF PROG_COEFF_COEFF 29/0x10 COEFFICIENT RESERVED RESERVED EVEN_STAGE2 _COEFF PROG_COEFF_WE COEFF_COEFF 29/0x10 COEFFICIENT RESERVED RESERVED EVEN_STAGE2 _COEFF PROG_COEFF_WE COEFF_WE	16 / 0x10	VOLUME 2				VO	LUME 2							
20/0x14 GPIO INPUT 21/0x15 GPIO INPUT SELECTION & OSF BYPASS GPIO_INPUT_SEL2 GPIO_INPUT_SEL1 RESERVED BYPASS_IIR RESERVED BYPASS_ BYPASS_ COMPENSATION COMPENSATION COEFFICIENTS BYPASS_IIR RESERVED BYPASS_IIR RESERVED BYPASS_ BYPASS_IIR RESERVED BYPASS_IIR RESERVED THD_COMP_C2 23/0x17 COEFFICIENTS COEFFICIENTS THD_COMP_C3 COEFFICIENTS THD_COMP_C3 <	18 / 0x12	MASTER TRIM				MAS	TER_TRIM							
21 / 0x15 SELECTION & OSF BYPASS GPIO_INPUT_SEL2 GPIO_INPUT_SEL1 RESERVED BYPASS_IR RESERVED BYPASS_IR 22 / 0x16 2ND HARMONIC COMPENSATION 023 / 0x17 COMPENSATION COEFFICIENTS THD_COMP_C2 THD_COMP_C3 24 / 0x18 3RD HARMONIC COMPENSATION 025 / 0x19 COEFFICIENTS THD_COMP_C3 THD_COMP_C3 26 / 0x1A PROGRAMMABLE FILTER ADDRESS PROG_COEFF _STAGE PROG_COEFF_ADDR THD_COMP_C3 27 / 0x1B PROGRAMMABLE FILTER ADDRESS STAGE PROG_COEFF PROG_COEFF 29 / 0x1C FILTER FILTER CONTROL RESERVED PROG_COEFF PROG_ COEFF_WE PROG_ COEFF_WE 30 / 0x1E PROGRAMMABLE FILTER CONTROL RESERVED RESERVED CHIP_ID AUTOMUTE _STATUS COEFF_WE 64 / 0x40 CHIP STATUS RESERVED REVISION CHIP_ID AUTOMUTE _STATUS LOCK_STATUS 65 / 0x41 GPIO STATUS RESERVED RESERVED DPLL_NUM GPIO_1 66 / 0x42 67 / 0x43 DPLL RATIO DPLL RATIO DPLL_NUM					1		-		1					
23/0x17 COMPENSATION COEFFICIENTS THD_COMP_C2 24/0x18 3RD HARMONIC COEFFICIENTS THD_COMP_C3 25/0x19 COMPENSATION COEFFICIENTS THD_COMP_C3 26/0x1A PROGRAMMABLE FILTER ADDRESS PROG_COEFF_ADDR 27/0x1B PROGRAMMABLE FILTER ADDRESS	21 / 0x15	SELECTION & OSF	GPIO_INP	JT_SEL2	GPIO_INF	PUT_SEL1	RESERVED	BYPASS_IIR	RESERVED	BYPASS_OSF				
23/0x17 COEFFICIENTS 24/0x18 3RD HARMONIC 25/0x19 COMPENSATION 25/0x19 COEFFICIENTS 26/0x1A PROGRAMMABLE FILTER ADDRESS _STAGE 27/0x1B PROGRAMMABLE 28/0x1C FILTER ADDRESS 28/0x1C FILTER ADDRESS 29/0x1D COEFFICIENT 29/0x1D COEFFICIENT 29/0x1D COEFFICIENT 29/0x1D COEFFICIENT 28/0x1C FILTER CONTROL FILTER CONTROL RESERVED Reserved EVEN_STAGE2 PROG PROG_COEFF 29/0x1D COEFFICIENT 30/0x1E PROGRAMMABLE FILTER CONTROL RESERVED 64/0x40 CHIP STATUS RESERVED REVISION 65/0x41 GPIO STATUS 66/0x42 OPLL_NUM 68/0x44 DPLL RATIO 68/0x44 DPLL RATIO						THD	COMP C2							
25 / 0x19 COMPENSATION COEFFICIENTS THD_COMP_C3 26 / 0x1A PROGRAMMABLE FILTER ADDRESS PROG_COEFF _STAGE PROG_COEFF_ADDR 27 / 0x1B PROGRAMMABLE FILTER ADDRESS STAGE PROG_COEFF 28 / 0x1C FILTER PROGRAMMABLE FILTER PROG_COEFF 29 / 0x1D COEFFICIENT PROGRAMMABLE FILTER CONTROL PROG_COEFF 30 / 0x1E PROGRAMMABLE FILTER CONTROL RESERVED EVEN_STAGE2 COEFF_WE PROG_ COEFF_WE PROG_ COEFF_WE 30 / 0x1E PROGRAMMABLE FILTER CONTROL RESERVED EVEN_STAGE2 COEFF_WE PROG_ COEFF_WE PROG_ COEFF_WE PROG_ COEFF_WE 64 / 0x40 CHIP STATUS RESERVED RESERVED AUTOMUTE _STATUS LOCK_ST. 65 / 0x41 GPIO STATUS RESERVED GPIO I GPIO I 66 / 0x42 OPLL RATIO DPLL RATIO DPLL RATIO DPLL RATIO														
COEFFICIENTS PROG_COEFF PROG_COEFF PROG_COEFF 26 / 0x1A PROGRAMMABLE STAGE PROG_COEFF_ADDR 27 / 0x1B PROGRAMMABLE STAGE PROG_COEFF 28 / 0x1C FILTER FILTER PROG_COEFF 29 / 0x1D COEFFICIENT PROGRAMMABLE PROG_COEFF 30 / 0x1E FROGRAMMABLE RESERVED RESERVED EVEN_STAGE2 PROG_COEFF_WE COEFF 30 / 0x1E FILTER CONTROL RESERVED RESERVED COEFF COEFF COEFF COEFF 64 / 0x40 CHIP STATUS RESERVED REVISION CHIP_ID AUTOMUTE _STATUS LOCK_ST 65 / 0x41 GPIO STATUS RESERVED RESERVED DPLL_NUM GPIO_1 66 / 0x42 67 / 0x43 DPLL RATIO DPLL RATIO DPLL_NUM DPLL_NUM		COMPENSATION				THD_	COMP_C3							
HILTER ADDRESS STAGE			PROG_COEFF											
28/0x1C FILTER 29/0x1D COEFFICIENT 30/0x1E PROGRAMMABLE FILTER CONTROL RESERVED 64/0x40 CHIP STATUS 65/0x41 GPIO STATUS 66/0x42 67/0x43 DPLL RATIO 68/0x44 OPLL RATIO			_STAGE											
29/0x1D COEFFICIENT 30/0x1E PROGRAMMABLE FILTER CONTROL RESERVED RESERVED EVEN_STAGE2 _COEFF PROG_ COEFF_WE PROG_ COEFF_WE PROG_ COEFF_WE PROG_ COEFF_WE PROG_ COEFF_WE PROG_ COEFF_WE PROG_ COEFF_WE PROG_ COEFF_WE PROG_ COEFF_WE COEFF_WE		FILTER				PRO	G_COEFF							
30/081e FILTER CONTROL RESERVED OEFF COEFF_WE COEFF_WE Read Only 64/0x40 CHIP STATUS RESERVED REVISION CHIP_ID AUTOMUTE 	29 / 0x1D	COEFFICIENT			_									
Read Only AUTOMUTE 64 / 0x40 CHIP STATUS RESERVED REVISION CHIP_ID AUTOMUTE_STATUS LOCK_ST. 65 / 0x41 GPIO STATUS RESERVED RESERVED GPIO_I 66 / 0x42 67 / 0x43 DPLL RATIO GPIO_I GPIO_I 68 / 0x44 000000000000000000000000000000000000	30 / 0x1E													
64 / 0x40 CHIP STATUS RESERVED REVISION CHIP_ID AUTOMUTE_STATUS LOCK_ST. 65 / 0x41 GPIO STATUS RESERVED RESERVED GPIO_I 66 / 0x42 G7 / 0x43 DPLL RATIO DPLL RATIO GPIO_I 68 / 0x44 044 044 044 044 044	Read Only							_	-	·				
65 / 0x41 GPIO STATUS RESERVED GPIO_I 66 / 0x42		CHIP STATUS								LOCK_STATUS				
66 / 0x42 67 / 0x43 68 / 0x44 69 / 0x45	65 / 0x41	GPIO STATUS			•	RESERVED				GPIO_I[0]				
68 / 0x44 DPLL RATIO DPLL_NOM 69 / 0x45														
70-03 /	68 / 0x44	DPLL RATIO		DPLL_NUM										
Ox46-0x5D CHANNEL STATUS SPDIF CHANNEL STATUS	70-93 /	CHANNEL STATUS				SPDIF CH	ANNEL STATUS							

REGISTER SETTINGS

Register #0: System Settings

8 bit, Read-Write Register, Default = 0x00

Bits	[7]	[7] [6] [5] [4] [3] [2] [1]				[0]		
Mnemonic		osc	_drv		reserved *		d *	soft_reset
Default	0	0	0	0	0	0	0	0

Bit	Mnemonic	Description
[7:4]	osc_drv	Oscillator drive specifies the bias current to the oscillator pad. • 4'b0000: full bias (default) • 4'b1000: 3/4 bias • 4'b1100: 1/2 bias • 4'b1110: 1/4 bias • 4'b1111: shut down the oscillator • Other settings: reserved It is recommended to use the default setting.
[3:1]	reserved *	
[0]	soft_reset	1'b0 is normal operation (default) 1'b1 resets chip

* All Reserved Bits in Register #0 must be set to the indicated logic level to ensure correct device operation.

Register #1: Input Configuration

8 bit, Read-Write Register, Default = 0x8C

Bits	[7]	[6]	[5]	[4]	[3]	[3] [2]		[0]
Mnemonic	i2s_le	ength	i2s_r	node	auto_input_select		input_	select
Default	1	0	0	0	1 1		0	0

Bit	Mnemonic	Description
		2'd0 = 16bit
[7:6]	i2s_length	2'd1 = 24bit
		2'd2 or 2'd3 = 32bit (default)
		$2'd0 = I^2S$ (default)
[5:4]	i2s_mode	2'd1 = LJ mode
		2'd2 = I ² S
		2'd3 = LJ mode
		2'd0 = 'input select',
[3:2]	auto_input_select	$2'd1 = I^2S$ or DSD,
[3.2]	auto_input_select	$2'd2 = I^2S$ or SPDIF,
		$2'd3 = I^2S$, SPDIF or DSD (default)
		$2'd0 = I^2S$ (default)
[1.0]	input coloct	2'd1 = SPDIF
[1:0]	input_select	2'd2 = reserved
		2'd3 = DSD

3.2

Register #2: Reserved

8 bit, Read-Write Register, Default = 0x18

Bits	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
Mnemonic		Reserved						
Default	0	0	0	1	1	0	0	0

Register #3: Reserved

8 bit, Read-Write Register, Default = 0x10

Bits	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
Mnemonic				Rese	erved			
Default	0	0	0	1	0	0	0	0

Register #4: Soft Volume Control 1 (Automute Time)

8 bit, Read-Write Register, Default = 0x00

Bits	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
Mnemonic			au	utomu	te_tin	ne		
Default	0	0	0	0	0	0	0	0

Bit	Mnemonic	Description
[7:0]	automute_time	Default of 8'd0 (Automute Disabled) Time in Seconds = 2096896 / (automute_time x DATA_CLK) with DATA_CLK in Hz

Register #5: Soft Volume Control 2 (Automute Level)

8 bit, Read-Write Register, Default = 0x68

Bits	[7]	[6] [5] [4] [3] [2] [1]				[1]	[0]	
Mnemonic	automute_loopback			autor	nute_	leve		
Default	0	1	1	0	1	0	0	0

Bit	Mnemonic	Description
[7]	automute_loopback	1'b0 disables automute_loopback (default) 1'b1 ramps to -infinity on automute
[6:0]	automute_level	The level (in 1dB increments) of the automute, default of 7'd104

Register #6: Soft Volume Control 3 and De-emphasis

8 bit, Read-Write Register, Default = 0x4A

Bits	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
Mnemonic	spdif_auto_deemph	deemph_bypass	deemp	oh_sel	reserved *	V	ol_rat	te
Default	0	1	0	0	1	0	1	0

Bit	Mnemonic	Description
[7]	spdif_auto_deemph	1'b0 disables automatic de-emphasis select in SPDIF mode (default)
[']	spail_aato_accimpii	1'b1 enables automatic de-emphasis select in SPDIF mode
[6] deemph_bypass		1'b0 enables de-emphasis filters
[0]	deempn_bypass	1'b1 disabled de-emphasis filters (default)
		2'b00 = 32kHz (default)
[5.4]	deemph eel	2'b01 = 44.1kHz
[5:4]	deemph_sel	2'b10 = 48kHz
		2'b11 = RESERVED
[3]	reserved *	Must be left as 1'b1 for normal operation
[2:0]	vol rato	3'd2 by default
[2.0]	vol_rate	Sets the volume ramp rate to 0.0078125 x fs / 2 ^(vol_rate-5) dB/s

* All Reserved Bits in Register #6 must be set to the indicated logic level to ensure correct device operation.

Register #7: General Settings

8 bit, Read-Write Register, Default = 0x80

Bits	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
Mnemonic	reserved	filter_	shape	reserved *	iir_	bw	mu	ute
Default	1	0	0	0	0	0	0	0

Bit	Mnemonic	Description
[7]	reserved *	
[6:5]	filter_shape	2'd0 = fast rolloff (default) 2'd1 = slow rolloff 2'd2 = minimum phase 2'd3 = reserved
[4]	reserved	
[3:2]	iir_bw	2'd0 = 1.0757 x fs or 47.44kHz (fs = 44.1kHz) - Normal mode (default) 2'd1 = 1.1338 x fs or 50kHz (fs = 44.1kHz) 2'd2 = 1.3605 x fs or 60kHz (fs = 44.1kHz) 2'd3 = 1.5873 x fs or 70kHz (fs = 44.1kHz)
[1:0]	mute	 This is a soft mute, which uses the ramping volume control. mute[0] 1'b0: Channel 1 (default of left channel) unmuted (default) 1'b1: Channel 1 (default of left channel) muted mute[1] 1'b0: Channel 2 (default of right channel) unmuted (default) 1'b1: Channel 2 (default of right channel) muted

* All Reserved Bits in Register #7 must be set to the indicated logic level to ensure correct device operation.

8 bit, Read-Write Register, Default = 0x10

Bits	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
Mnemonic		rese	rved		gpio1_cfg					
Default	0	0	0	1	0	0	0	0		

Bit	Mnemonic	Description
[7:4]	reserved	
		Set GPIO 1 configuration
[3:0]	gpio1_cfg	Default to 4'd0 (Automute Status).
		See GPIO Configuration Table below for meaning of all settings.

GPIO Configuration Table

Setting	Direction	GPIO Function
4'd0	Output	Automute status (active high)
4 00	Output	 asserted when Automute condition is met
4'd1	Output	DPLL Lock status (active high)
	Calpar	- asserted when DPLL is in lock
		Minimum Volume (active high)
4'd2	Output	 asserted when volume of both the left and right channels has ramped to its minimum value (–127.5dB).
4'd3	Output	MCLK
		DPLL Lock interrupt (active high)
4'd4	Output	- asserted when DPLL Lock status changes state
		- reading register 64 clears the interrupt
		Automute Interrupt (active high)
4'd5	Output	- asserted when Automute status changes state
		- reading register 64 clears the interrupt
		DPLL Lock or Automute interrupt (active high)
4'd6	Output	- asserted when DPLL Lock or Automute status changes state
		- reading register 64 clears the interrupt
4'd7	Output	Output low
4'd8	Input	Use as input pin - pin status can be read from register 65.
4'd9	Input	Input Selection - uses the GPIO as an input select based on register 21
4'd15	Output	Output high

Register #9: Reserved

8 bit, Read-Write Register, Default = 0x22											
Bits	[7]	[7] [6] [5] [4] [3] [2] [1] [0									
Mnemonic		Re	eserv	ed fo	r Rev	ision	V				
Default	0	0	0	0	0	0	0	0			

3.2

Register #10: Master Mode Control

8 bit, Read-Write Register, Default = 0x5

Bits	[7]	[6] [5]		[4]	[3]	[2]	[1]	[0]
Mnemonic	master_clock_enable	clock_divider_select		sync_mode	sync_mode stop_div		_div	
Default	0	0	0	0	0	1	0	1

Bit	Mnemonic	Description
[7]	master_clock_enable	1'b0 disables master mode (default) 1'b1 enables master mode (driving Bit clock and Frame Clock)
[6:5]	clock_divider_select	2'b00: Bit Clock frequency = MCLK / 4 (default) 2'b01: Bit Clock frequency = MCLK / 8 2b10: Bit Clock frequency = MCLK / 16 2'b11: Bit Clock frequency = MCLK / 16 Frame Clock frequency = Bit Clock frequency / 64
[4]	sync_mode	1'b1 to enable quick lock if the fs and MCLK are synchronous and MCLK is 128 x FSR. 1'b0 for normal operation of the DPLL and ASRC. Note: quick lock can only be used in PCM normal mode.
[3:0]	stop_div	Sets the number of FSR edges that must occur before the DPLL and ASRC can lock on to the incoming signal. 4'd0 = 16384 FSR edges 4'd1 = 8192 FSR edges 4'd2 = 5461 FSR edges 4'd3 = 4096 FSR edges 4'd4 = 3276 FSR edges 4'd5 = 2730 FSR edges (default) 4'd6 = 2340 FSR edges 4'd7 = 2048 FSR edges 4'd7 = 2048 FSR edges 4'd8 = 1820 FSR edges 4'd9 = 1638 FSR edges 4'd10 = 1489 FSR edges 4'd10 = 1489 FSR edges 4'd12 = 1260 FSR edges 4'd12 = 1260 FSR edges 4'd13 = 1170 FSR edges 4'd14 = 1092 FSR edges 4'd15 = 1024 FSR edges

For correct operation, master mode should only be enabled when the DAC's input mode is set to I²S, and when i2s_length is set to 32-bit and i2s_mode is set to I²S in register 1.

When master mode is enabled, the DATA_CLK pin will output Bit Clock and the DATA1 pin will output Frame Clock at frequencies specified by clock divider select.

For compatibility with Rev. W, or when PCM data with FSR > 96kHz is used, stop_div should be set to 4'd0 (16384 FSR edges).

Register #11: Channel Mapping

8 bit, Read-Write Register, Default = 0x02

Bits	[7]	[6] [5] [4]		[4]	[3]	[2]	[1]	[0]
Mnemonic	reserved *	spdif_sel			ch2_analog_swap	ch1_analog_swap	ch2_sel	ch1_sel
Default	0	0	0 0		0	0	1	0

Bit	Mnemonic	Description
[7]	reserved *	
[6:4]	spdif_sel	select the spdif data source 3'd0 = DATA_CLK (default) 3'd1 = DATA2 3'd2 = DATA1 3'd3 = GPIO1 3'd4-7: reserved
[3]	ch2_analog_swap	1'b0 = normal operation (default) 1'b1 = swap dac and dacb
[2]	ch1_analog_swap	1'b0 = normal operation (default) 1'b1 = swap dac and dacb
[1]	ch2_sel	1'b0 = left 1'b1 = right (default)
[0]	ch1_sel	1'b0 = left (default) 1'b1 = right

* All Reserved Bits in Register #11 must be set to the indicated logic level to ensure correct device operation.

Left and Right channels can be reversed using Register #11.

Register #12: DPLL/ASRC Settings

8 bit, Read-Write Register, Default = 0x5A

Bits	[7]	[6]	[5]	[5] [4] [3]		[2] [1]		[0]	
Mnemonic	C	lpll_b	w_i2	s	dpll_bw_dsd				
Default	0	1	0	1	1	0	1	0	

Bit	Mnemonic	Description
		DPLL bandwidth setting for I ² S and SPDIF modes (16 settings) 4'b0000 : OFF
		4'b0001 : Lowest Bandwidth
[7:4]	dpll_bw_i2s	4'b0101 : (default)
		4'b1010 :
		4'b1111 : Highest Bandwidth
		DPLL bandwidth setting for DSD mode (16 settings)
		4'b0000 : OFF
		4'b0001 : Lowest Bandwidth
[3:0]	dpll_bw_dsd	4'b0101 :
		4'b1010 : (default) ▼
		4'b1111 : Highest Bandwidth

Register #13: THD Compensation

8 bit. Read-Write Register. Default = 0x40

Bits	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
Mnemonic	reserved *	bypass_thd	reserved *					
Default	0	1	0 0 0 0 0			0		

Bit	Mnemonic	Description
[7]	reserved *	
[6]	bypass_thd	 1'b0: enable THD compensation output = input + (input²) x thd_comp_c2 + (input³) x thd_comp_c3 thd_comp_c2 is stored in registers 23-22 (16 bits signed) (register 23 stores MSBs) thd_comp_c3 is stored in registers 25-24 (16 bits signed) (register 25 stores MSBs) 1'b1: disable THD compensation (default) PCM mode: output = input; DSD mode: output = input / 2
[5:0]	reserved	

* All Reserved Bits in Register #13 must be set to the indicated logic level to ensure correct device operation.

THD compensation can be used to reduce the 2nd and 3rd harmonic distortion introduced by external output drivers.

A system level tuning is required to arrive at the optimum coefficients for thd_comp_c2 and thd comp_c3.

Notes:

- To get the same gain (output = input) for PCM and DSD modes without THD compensation, bypass_thd should be set to • 1'b0 with thd comp c2 and thd comp c3 set to 16'd0 (default)
- Erroneous compensation can lead to higher distortion than the one without compensation. If accurate tuning cannot be • performed, the comp c2 and the comp c3 should be set to 16'd0 (default) if bypass the is set to 1'b0.

Register #14: Soft Start Settings

8 bit, Read-Write Register, Default = 0x8A

Bits	[7]	[6]	[5]	[4] [3] [2] [1]			[0]	
Mnemonic	soft_start	soft_start_on_lock	mute_on_lock	soft_start_time				
Default	1	0	0	0	1	0	1	0

Bit	Mnemonic	Description
[7]	soft_start	1'b0: Ramp the output stream to ground
		1'b1: Normal operation (default) - ramp the output stream to ½ x AVCC_L/R 1'b0: Do not force output low when lock is lost (default)
[6]	soft_start_on_lock	1'b1: Force output low when lock is lost
[5]	mute_on_lock	1'b0: Do not force a mute when lock is lost (default)
r., 1		1'b1: Force a mute when lock is lost
[4:0]	soft start time	Time for soft start ramp = 4096 x 2 ^(soft_start_time+1) / MCLK seconds (where MCLK is measured in Hz).
[4.0]	soft_start_time	The valid range of soft-start_time is from 0 to 20.

Register #15: Volume 1 (usually selected for the Left Channel, but can be reversed using Register #11) 8 bit. Read-Write Register. Default = 0x00

Bits	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
Mnemonic				volu	me1			
Default	0	0	0	0	0	0	0	0

Bit	Mnemonic	Description
[7:0]	volume1	Default to 8'd0
[7.0]	volume i	0dB to -127.5dB in 0.5dB steps

Register #16: Volume 2 (usually selected for the Right Channel, but can be reversed using Register #11)

8 bit, Read-Write Register, Default = 0x00	C
--	---

Bits	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
Mnemonic	volume2							
Default	0	0	0	0	0	0	0	0

Bit	Mnemonic	Description
[7:0]	volume2	Default to 8'd0 0dB to –127.5dB in 0.5dB steps

Register #20-17: Master Trim

32 bit, Read-Write Register, Default = 32'h7ffffff. Reg 20 are the MSB's, Reg 17 are the LSB's.

Bits	[31:0]
Mnemonic	master_trim
Default	32'h7fffffff

This is a 32 bit value that sets the 0dB level for all volume controls. This is a signed number, so it should never exceed 32'h7fffffff (which is 2³¹ - 1).

Register #21: GPIO Input Selection and OSF Bypass

8 bit, Read-Write Register, Default = 0x00

Bits	[7:6] [5:4]		[3]	[2]	[1]	[0]		
Mnemonic	gpio_in	put_sel2	gpio_input_sel1		reserved *	bypass_iir	reserved *	bypass_osf
Default	0	0	0	0	0	0	0	0

Bit	Mnemonic	Description
[7:6]	gpio_input_sel2	Selects which input will be selected when GPIOX = 1'b1 2'd0 = I ² S data (default) 2'd1 = SPDIF data 2'd2 = reserved 2'd3 = DSD data
[5:4]	gpio_input_sel1	Selects which input will be selected when GPIOX = 1'b0 2'd0 = I ² S data (default) 2'd1 = SPDIF data 2'd2 = reserved 2'd3 = DSD data
[3]	reserved *	
[2]	bypass_iir	1'b0 = Use the IIR filter (default) 1'b1 = Bypass the IIR filter.
[3]	reserved *	
[0]	bypass_osf	 1'b0 = Use the interpolating 8x FIR filter (default) 1'b1 = Bypass the interpolating 8x FIR filter. Note: Bypassing the interpolating filter requires that the input data be oversampled at 8x fs by an external oversampling filter.

* All Reserved Bits in Register #21 must be set to the indicated logic level to ensure correct device operation.

Note: Any of the GPIO can be configured to be used as an input select. This allows an external MCU or controller to set the input type by setting the GPIO to either logic high (1'b1) or logic low (1'b0). To set this feature, the first step is to enable one of the GPIO as an input select by setting gpio_cfg to 4'd9. Once a GPIO is configured as an input select it has the ability to select between two different inputs. The first input (logic low) is set via register 21[5:4]. The second input (logic high) is set via register 21[7:6].

Register #23-22: 2nd Harmonic Compensation Coefficients

16 bit, Read-Write Register, Default = 0x0000 (no compensation). Register #23 is MSB. See Register #13 for more details.

Bits	[15:0]
Mnemonic	Thd_comp_c2
Default	16'd0

Register #25-24: 3rd Harmonic Compensation Coefficients

<u>16 bit, Read-Write Register, Default = 0x0000 (no compensation)</u>. Register #25 is MSB. See Register #13 for more details.

Bits	[15:0]
Mnemonic	Thd_comp_c3
Default	16'd0

Register #26: Programmable Filter Address

8 bit, Read-Write Register, Default = 0x00

Bits	[7]				6:0			
Mnemonic	prog_coeff_stage		pro	og_o	coef	f_ac	ddr	
Default	0	0	0	0	0	0	0	0

Bit	Mnemonic	Description
		Selects which stage of the filter to write.
[7]	prog_coeff_stage	1'b0 = Stage 1 of the oversampling filter (128 coefficients)
		1'b1 = Stage 2 of the oversampling filter (16 coefficients)
[6:0]	prog cooff oddr	Selects the coefficient address when writing custom coefficients
[6:0]	prog_coeff_addr	for the oversampling filter.

Register #29-27: Programmable Filter Coefficient

8 bit, Read-Write Register, Default = 0x000000

Bits	[23:0]
Mnemonic	prog_coeff
Default	24'd0

21

Bit	Mnemonic	Description
[23:0]	prog_coeff	A 24bit filter coefficients that will be written to address 'prog_coeff_addr'.

Register #30: Programmable Filter Control

8 bit, Read-Write Register, Default = 0x00

Bits	[7:3]				[2]	[1]	[0]
Mnemonic	reserved *			even_stage2_coeff	prog_coeff_we	prog_coeff_en	
Default	0 0 0 0 0		0	0	0	0	

Bit	Mnemonic	Description
[7:3]	reserved *	
[2]	even_stage2_coeff	Sets the type of symmetry of the stage 2 programmable filter. 1'b0 = Uses a sine symmetric filter (27 coefficients). 1'b1 = Uses a cosine symmetric filter (28 coefficients).
[1]	prog_coeff_we	1'b0 = Disable writing to the custom filter coefficients. 1'b1 = Enable writing to the custom filter coefficients. Note: When set to 1'b1 the custom filter will be bypassed regardless of the state of register 21[0].
[0]	prog_coeff_en	 1'b0 = Use one of the built-in oversampling filters. 1'b1 = Use the custom oversampling filter. Note: The custom filter is not programmed to anything on reset, valid coefficients must be written to the filter before enabling.

* All Reserved Bits in Register #30 must be set to the indicated logic level to ensure correct device operation.

Note: even_stage2_coeff sets the type of symmetry used by the second stage filter. The actual RAM is 16 coefficients, but only the first 14 coefficients are used when applying the oversampling filter. The first 14 coefficients are mirrored using either sine or cosine symmetry, resulting in a filter length of either 27 or 28 taps. This means that the second stage RAM should only contain half of the impulse response of the second stage filter, and the impulse peak value will be contained in the 14th coefficient. Also note that, due to the symmetry of the filter, only linear phase filters may be used in the second stage.

New product version is available in ES9020Q

Register #64: Chip Status

8 bit, Read-Only Register

Bits	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
Mnemonic	Rese	erved	revision	С	hip_ic	ł	automute_status	lock_status

Bit	Mnemonic	Description
[7:6]	Reserved	
[5]	revision	1'b0 => revision W. 1'b1 => revision V.
[4:2]	chip_id	3'd6 => ES9016K2M
[1]	automute_status	1'b0 => Automute condition is inactive. 1'b1 => Automute condition is active.
[0]	lock_status	1'b0 => The Jitter Eliminator is not locked to an incoming signal. 1'b1 => The Jitter Eliminator is locked to an incoming signal.

Register #65

8 bit, Read-Only Register

Bits	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
Mnemonic		reserved					gpio_l[1:0]	

Bit	Mnemonic	Description
[7:2]	reserved	
[0]	gpio_I[0]	Status of pin GPIO1

Register #69-66: DPLL Ratio

32 bit, Read-Only Register. Reg 69 are the MSB's, Reg 66 are the LSB's

Bits	[31:0]
Mnemonic	dpll_num

This is a read-only 32bit value that can be used to calculate the sample rate. The raw sample rate (FSR) can be calculated using: FSR = (DPLL_NUM x F_{MCLK}) / 2^{32} .

Note that the DPLL number (register 66-69) should be read from LSB to MSB as it is latched on the LSBs (register 66).

Register #93-70: Channel Status

Reg 93 are the MSB's, Reg 70 are the LSB's Format is [191:0]

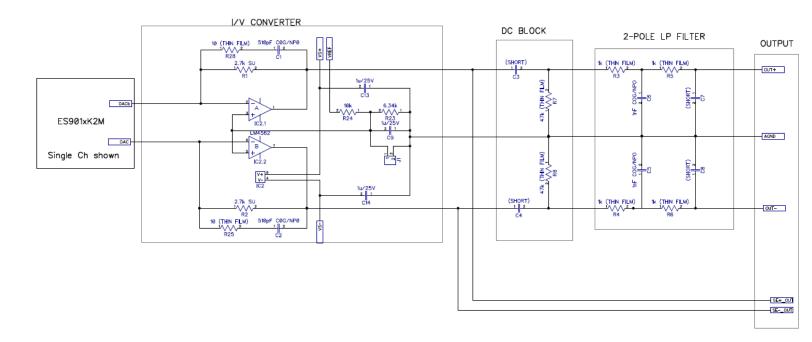
These registers allow read back of the SPDIF channel status. The status definition is different for the consumer configuration and professional configuration. Please refer to the following two tables for details.

New product version is available in ES9020Q

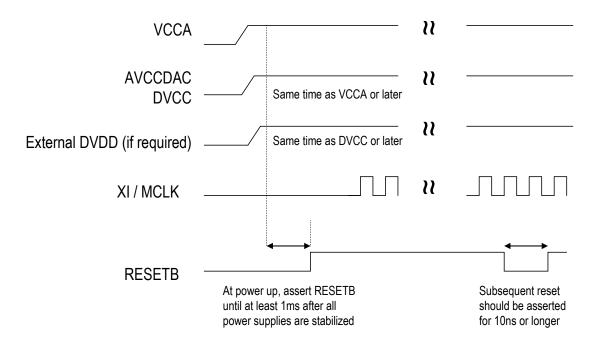
ES9016K2M Datasheet

		<u>SPDIF</u>	CHANNEL	<u>STATUS -</u>	Consumer	configuration	<u>on</u>	
Address Offset	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0	Reserved	Reserved	0:2Channel 1:4Channel	Reserved	0:No-Preemph 1:Preemph	0:CopyRight 1:Non-CopyRight	0:Audio 1:Data	0:Consumer 1:Professional
1	0x05: Music 0x06: Presc 0x08: Solid 0x16: Futur 0x19: DVD	eral r-Optical Converter hetic al Broadcast cal Instrumen ent A/D Conv State Memo e A/D Conve	erter ry					
2	0x40: Expe Channel Nu 0x0: Don't 0 0x1: A (Lef 0x2: B (Rig 0x3: C 0x4: D 0x5: E 0x6: F 0x7: G 0x8: H 0x9: I 0x8: H 0x9: I 0x8: K 0x8: K 0x8: L 0xD: M 0xE: N 0xF: O	umber Care t)			Source Number 0x0: Don't Care 0x1: 1 0x2: 2 0x3: 3 0x4: 4 0x5: 5 0x6: 6 0x7: G 0x8: 8 0x9: 9 0xA: 10 0xB: 11 0xC: 12 0xD: 13 0xE: 14 0xF: 15			
3	Reserved	Reserved	Clock Accuracy 0x0:Level 2 +-10 0x1:Level 1 +-50 0x2:Level 3 varia	ppm	Sample Frequer 0x0: 44.1k 0x2: 48k 0x3: 32k 0x4: 22.05k 0x6: 24k 0x8: 88.2k 0xA: 96k 0xC: 176.4k 0xE: 192k	icy		
4	Reserved	Reserved	Reserved	Reserved	Word Length:	e=0 If Word Field S d 000=Not indicat 100 = 19bits 010 = 18bits 110 = 17bits 001 = 16bits 101 = 20bits		Word Field Si 0:Max 20bits 1:Max 24bits

New product version is available in ES9020Q


ES9016K2M Datasheet

	SPDIF	<u>CHA</u>	NNEL STAT	<u>US - Pi</u>	ofessi	onal conf	iguration	
Address Offset	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0	sampling frequency: 00: not indicated (or see I 10: 48kHz 01: 44.1kHz 11: 32kHz	ot indicated (or see byte 4) 8kHz 4.1kHz		001: No 011: CD	s: phasis not emphasis type emph 7 emphasis	asis	0:Audio 1:Non-audio	0:Consumer 1:Professional
1	User bit management: 0000: no indication 1000: 192-bit block as ch 0100: As defined in AES1 1100: user-defined 0010: As in IEC60958-3 (8			1000: 2 0 0100: 1 0 1100: pri 0010: ste 1010: res 0110: res 1110: SC 0001: SC 1001: SC	t indicated (defa channel channel (monop imary / seconda	honic) ry applications applications 3 for ID) ft) ght)	
2	alignment level: 00: not indicated 10: –20dB FS 01: –18.06dB FS		Source Word Lengt If max = 20bits 000=Not indicated 100 = 23bits 010 = 22bits 110 = 21bits 001 = 20bits 101 = 24bits	If max = 24bits 000: not defin 1000=Not indicated 100: used for 1100 = 19bits 010: used for 010 = 18bits 110: reserved 110 = 17bits 1001 = 16bits			eḋ, audio max 20 bits main audio, max 24 bits coord, audio max 20 bits	
3	Channel identification: if bit 7 = 0 then channel n if bit 7 = 1 then bits 4–6 d	umber is	s 1 plus the numeric v	101 = 20t	s 0-6 (bit re	eversed).	and number within	that made
4	fs scaling: 0: no scaling 1: apply factor of 1 / 1.001 to value	Sam 0000 0001 0010 1001 1010 1011 0011	indicatine mode and obe frequency (fs): : not indicated : 24kHz : 96kHz : 22.05kHz : 88.2kHz : 176.4kHz : 192kHz : User defined		UITIEVEISE	Reserved		udio reference signal) ; e 2 (±10 ppm)
5	Reserved							
6-9	alphanumerical channel of	origin: fo	ur-character label usi	ng 7-bit AS	CII with no	parity. Bits 55,	63, 71, 79 = 0.	
10-13	alphanumerical channel of	lestinatio	on: four-character lab	el using 7-	bit ASCII w	ith no parity. Bit	s 87, 95, 103, 111	= 0.
14-17	local sample address cod	e: 32-bi	t binary number repre	esenting the	e sample co	ount of the first s	ample of the chan	nel status block.
18-21	time of day code: 32-bit b	inary nu	mber representing tin	ne of sourc	e encoding	g in samples sind	ce midnight	
22	reliability flags 0: data in byte range is re 1: data in byte range is ur							
23	CRCC 00000000: not implement X: error check code for bi	ed						


ESS TECHNOLOGY, INC. 109 Bonaventura Drive, San Jose, CA 95134, USA Tel (408) 643-8800 • www.esstech.com

APPLICATION DIAGRAM

RECOMMENDED POWER-UP SEQUENCE

ABSOLUTE MAXIMUM RATINGS

PARAMETER	RATING
Storage temperature	–65°C to +105°C
Voltage range for digital input pins	-0.3V to DVCC+ 0.3V
ESD Protection	
Human Body Model (HBM)	2000V
Machine Model (MM)	200V

WARNING: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute–maximum–rated conditions for extended periods may affect device reliability.

WARNING: Electrostatic Discharge (ESD) can damage this device. Proper procedures must be followed to avoid ESD when handling this device.

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	CONDITIONS
Operating temperature	TA	–20°C to +70°C

Power Supply		Voltage	Current nominal (Note 1)	Current standby (Notes 1, 2)
Digital Power Supply Voltage	DVCC	+1.8V ± 5% +3.3V ± 5%	13.0mA 14.2mA	0mA 0mA
Internal Digital Core supply	DVDD	+1.2V (typical)		
External Digital Core Supply	DVDD	+1.3V ± 5% (Note 3)	50mA	
Analog Core Supply Voltage	VCCA (Note 4)	+3.3V ± 5% +1.8V ± 5%	0.8mA	0mA
Analog Power Supply Voltage	AVCCDAC (Note 4)	+3.3V ± 5% +1.8V ± 5%	8.0mA	0mA
Total Power		DVCC = +1.8V DVCC = +3.3V	≤ 36mW ≤ 59mW	< 1mW < 1mW

Notes:

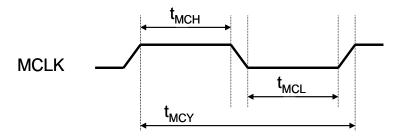
(1) fs = 44.1kHz, external MCLK = 22MHz, I^2S input, DAC output connected to current-to-voltage converter, internal DVDD, all external supply voltages at nominal center values

(2) With RESETB held low after setting the soft_start bit in register 14 to 1'b0 to fully ramp the DAC outputs to ground
 (3) Internal DVDD should be used except under the conditions described on page 7. External DVDD current measured at 192kHz sample rate and MCLK = 80MHz.

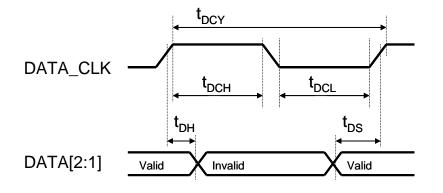
(4) For correct operation, VCCA \geq AVCCDAC.

DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Minimum	Maximum	Unit	Comments
VIH	High-level input voltage	DVCC / 2 + 0.4		V	
VIL	Low-level input voltage		0.4	V	
VOH	High-level output voltage	DVCC – 0.2		V	IOH = 100μA
VOL	Low-level output voltage		0.2	V	IOL = 100µA


New product version is available in ES9020Q

ES9016K2M Datasheet


3.2

XI / MCLK Timing

Parameter	Symbol	Min	Max	Unit
MCLK pulse width high	T _{MCH}	4.5		ns
MCLK pulse width low	TMCL	4.5		ns
MCLK cycle time	Тмсу	10		ns
MCLK duty cycle		45:55	55:45	

Audio Interface Timing

Parameter	Symbol	Min	Max	Unit
DATA_CLK pulse width high	tосн	4.5		ns
DATA_CLK pulse width low	t DCL	4.5		ns
DATA_CLK cycle time	t DCY	10		ns
DATA_CLK duty cycle		45:55	55:45	
DATA set-up time to DATA_CLK rising edge	t _{DS}	4.1		ns
DATA hold time to DATA_CLK rising edge	t _{DH}	2		ns

Notes:

- Audio data on DATA[2:1] are sampled at the rising edges of DATA_CLK and must satisfy the setup and hold time requirements relative to the rising edge of DATA_CLK
- For DSD Phase mode, the normal data (D0, D1, D2.. on p.10) must satisfy the setup and hold time requirements relative to the rising edge of DATA_CLK. The complimentary data (D0, D1, etc.) will be ignored.

ANALOG PERFORMANCE

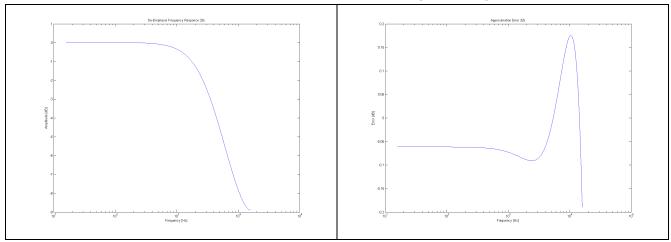
Test Conditions (unless otherwise stated)

1. T_A = 25°C, AVCCDAC = VCCA = DVCC = 3.3V, internal DVDD with 4.7mF ±20% decoupling, fs = 44.1kHz, MCLK = 27MHz & 32-bit data

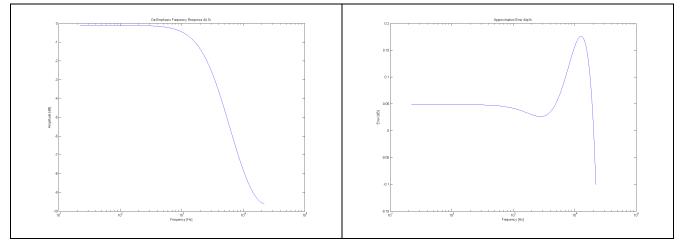
2. SNR/DNR: A-weighted over 20Hz-20kHz in averaging mode THD+N: un-weighted over 20Hz-20kHz bandwidth

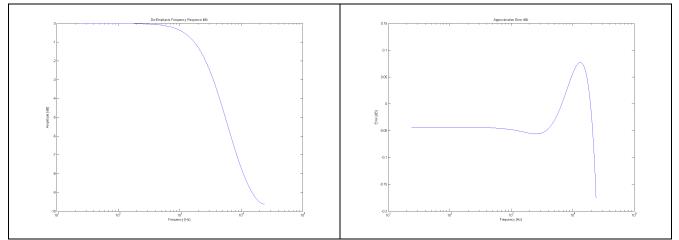
PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNIT
Resolution			32		Bits
MCLK (PCM normal mode)	Note *3	192FSR			
MCLK (PCM OSF bypass mode)		24FSR		Nata *0	
MCLK (DSD mode)		3FSR		Note *2	Hz
MCLK (SPDIF mode)		386FSR			
DYNAMIC PERFORMANCE		-			
DNR (differential current mode)	-60dBFS		122		dB-A
THD+N (differential current mode)	0dBFS		-110		dB
ANALOG OUTPUT			·	•	
Differential (+ or –) voltage out range (Note *4)	Full-scale out		3.05 (0.924 x AVCCDAC)		Vp-р
Differential (+ or –) voltage out offset (Note *4)	Bipolar zero out		1.65 (AVCCDAC / 2)		V
Differential (+ or –) current out range (Notes *1, *4)	Full-scale out		3.784		mAp-p
Differential (+ or –) current out offset (Notes *1, *4)	Bipolar zero out to virtual ground at voltage Vg (V)		2.047 – (1000 x Vg) / 806		mA
Digital Filter Performance					
De-emphasis error				±0.2	dB
Mute Attenuation			127		dB
PCM Filter Characteristics (Sharp Roll	Off)				
Developed	±0.003dB			0.454fs	Hz
Pass band	–3dB			0.49fs	Hz
Stop band	<	0.546fs			Hz
Group Delay			35 / fs		S
PCM Filter Characteristics (Slow Roll O	ff)			•	
	±0.05dB			0.308fs	Hz
Pass band	-3dB			0.454fs	Hz
Stop band	< - 100dB	0.814fs			Hz
Group Delay			6.25 / fs	1	S
PCM Filter Characteristics (Minimum P	hase)	1		1	1
	±0.003dB			0.454fs	Hz
Pass band	-3dB			0.49fs	Hz
Stop band	< -115dB	0.546fs			Hz

Notes:

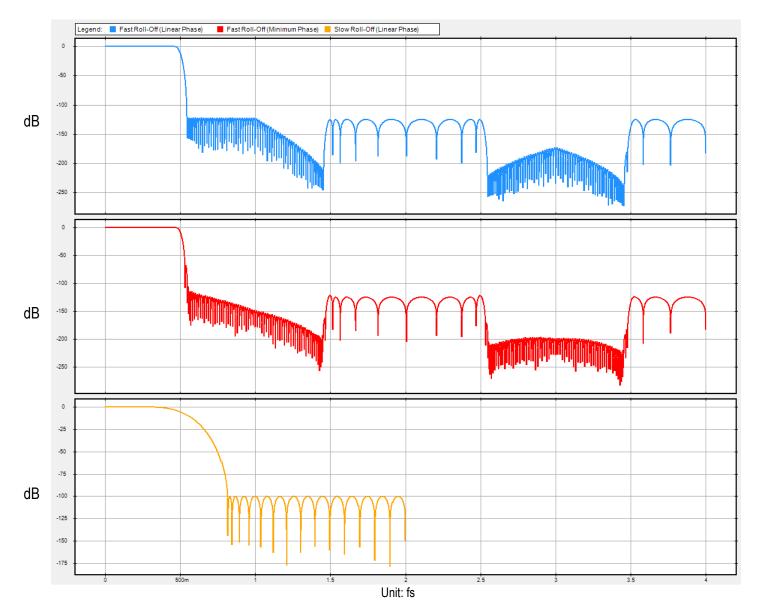

- *1. Differential (+ or –) current output is equivalent to a differential (+ or –) voltage source in series with an 806Ω ±11% resistor. The differential (+ or –) voltage source has a peak-to-peak output range of 0.924 x AVCCDAC = 3.05V and an output offset of AVCCDAC / 2 = 1.65V.
- *2. With internal DVDD, maximum MCLK frequency is 50MHz (DVCC = 1.8V), or 100MHz (DVCC = 3.3V) with an external +1.3V DVDD supply.
- *3. Synchronous MCLK at 128 x FSR is also supported.
- *4. Values are valid for AVCCDAC = 3.3V. For AVCCDAC = 1.8V, formulas should be used.

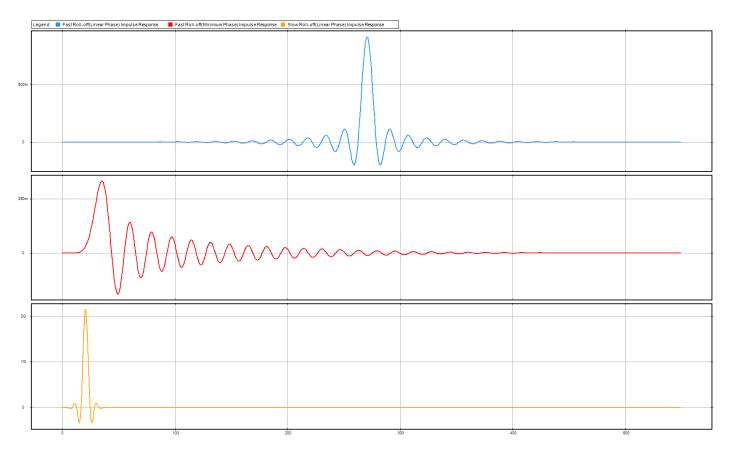
New product version is available in ES9020Q


ES9016K2M Datasheet


PCM DE-EMPHASIS FILTER RESPONSE (32kHz)

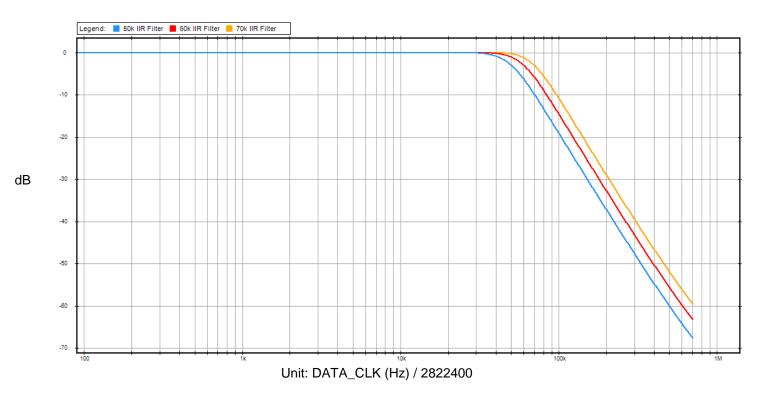
PCM DE-EMPHASIS FILTER RESPONSE (44.1kHz)


PCM DE-EMPHASIS FILTER RESPONSE (48kHz)


ES9016K2M Datasheet

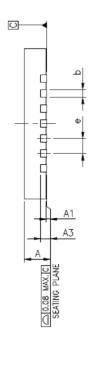
PCM FILTER FREQUENCY RESPONSE

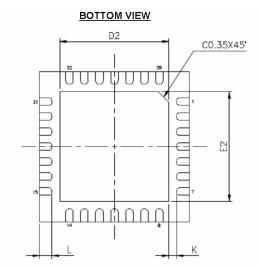
PCM FILTER IMPULSE RESPONSE



Unit: 1/fs (s)

DSD FILTER RESPONSE




ES9016K2M Datasheet

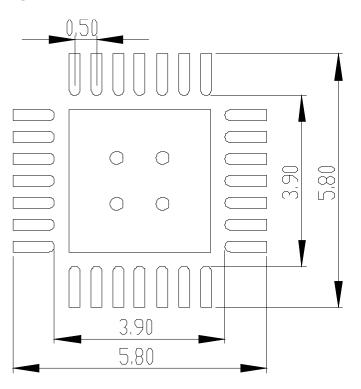
28-Pin QFN Mechanical Dimensions

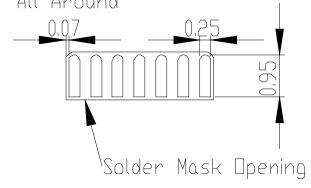
TOP VIEW PIN 1 22 28 21 1 ш 7 15 8 14 D SYMBOLS MIN. NOM. MAX. 0.70 А 0.90

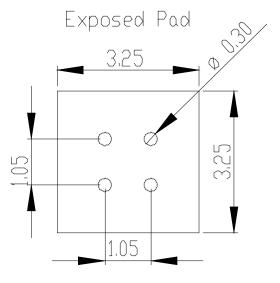
NOTES :

- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSION & APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.15mm AND 0.30mm FROM THE TERMINAL TIP. IF THE TERMINAL HAS THE OPTIONAL RADIUS ON THE OTHER END OF THE TERMINAL, THE DIMENSION & SHOULD NOT BE MEASURED IN THAT RADIUS AREA.
- 3. BILATERAL COPLANARITY ZONE APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.

A1	0.00	0.02	0.05								
A3	0	203 R	EF.	[
b	0.18	0.25	0.30	Ι							
D	5	.00 BS	SC	Ι							
E	5	5.00 BSC		Ι							
e	0	.50 BS	SC								
К	0.20	-	—	Ι							
	E2				D2			L		LEAD	FINISH
	MIN	NOM	MAY	MIN		MAY	MUN		MAY	Duro Tro	


					02			-			1.11.01.1
PAD SIZE	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	Pure Tin	PPF
	2.50		3.60	2.50		3.60	0.50	0.55	0.60	V	Х


New product version is available in ES9020Q


ES9016K2M Datasheet

Example 28-Pin QFN Land Pattern

Non Solder Mask Defined Pad All Around

Notes:

- 1. All dimensions are in millimeters.
- 2. Thermal vias should be 0.3mm to 0.33mm in diameter, with the barrel plated to 1oz copper.
- 3. For maximum solder mask in the corners, round the inner corners of each row.
- 4. Exposed pad should be solder mask defined.
- 5. Pad width can be reduced to 0.25mm if additional pad to pad clearance is required.
- 6. For applications where solder loss through vias is a concern, plugging or tenting of the vias should be used. The solder mask diameter for each via should be 0.1mm larger than the via diameter.

Reflow Process Considerations

For lead-free soldering, the characterization and optimization of the reflow process is the most important factor you need to consider.

The lead-free alloy solder has a melting point of 217°C. This alloy requires a minimum reflow temperature of 235°C to ensure good wetting. The maximum reflow temperature is in the 245°C to 260°C range, depending on the package size *(Table RPC-2)*. This narrows the process window for lead-free soldering to 10°C to 20°C.

The increase in peak reflow temperature in combination with the narrow process window makes the development of an optimal reflow profile a critical factor for ensuring a successful lead-free assembly process. The major factors contributing to the development of an optimal thermal profile are the size and weight of the assembly, the density of the components, the mix of large and small components, and the paste chemistry being used.

Reflow profiling needs to be performed by attaching calibrated thermocouples well adhered to the device as well as other critical locations on the board to ensure that all components are heated to temperatures above the minimum reflow temperatures and that smaller components do not exceed the maximum temperature limits (*Table RPC-2*).

To ensure that all packages can be successfully and reliably assembled, the reflow profiles studied and recommended by ESS are based on the JEDEC/IPC standard J-STD-020 revision D.1.

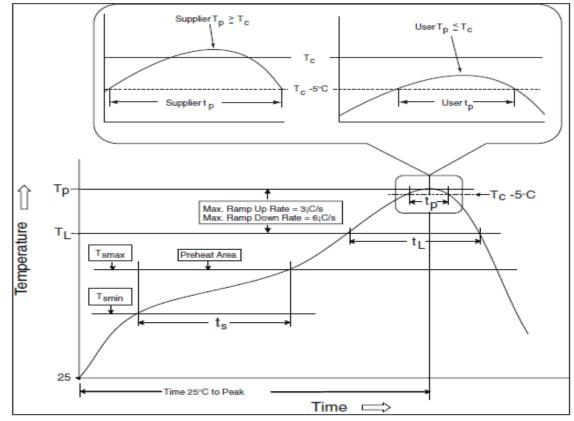


Figure RPC-1. IR/Convection Reflow Profile (IPC/JEDEC J-STD-020D.1)

Note: Reflow is allowed 3 times. Caution must be taken to ensure time between re-flow runs does not exceed the allowed time by the moisture sensitivity label. If the time elapsed between the re-flows exceeds the moisture sensitivity time bake the board according to the moisture sensitivity label instructions.

Manual Soldering:

Allowed up to 2 times with maximum temperature of 350 degrees no longer than 3 seconds.

Table RPC-1 Classification reflow profile

Profile Feature	Pb-Free Assembly
Preheat/Soak	
Temperature Min (Tsmin)	150°C
Temperature Max (Tsmax)	200°C
Time (ts) from (Tsmin to Tsmax)	60-120 seconds
Ramp-up rate (TL to Tp)	3°C / second max.
Liquidous temperature (TL)	217°C
Time (tL) maintained above TL	60-150 seconds
Peak package body temperature	For users Tp must not exceed the classification temp in Table RPC-2.
(Tp)	For suppliers Tp must equal or exceed the Classification temp in Table RPC-2.
Time (tp)* within 5°C of the specified classification temperature (Tc), see Figure RPC-1	30* seconds
Ramp-down rate (Tp to TL)	6°C / second max.
Time 25°C to peak temperature	8 minutes max.
* Tolerance for peak profile temperate	ure (Tp) is defined as a supplier minimum and a user maximum.

Note 1: All temperatures refer to the center of the package, measured on the package body surface that is facing up during assembly reflow (e.g., live-bug). If parts are reflowed in other than the normal live-bug assembly reflow orientation (i.e., dead-bug), Tp shall be within ± 2°C of the live-bug Tp and still meet the Tc requirements, otherwise, the profile shall be adjusted to achieve the latter. To accurately measure actual peak package body temperatures refer to JEP140 for recommended thermocouple use.

Note 2: Reflow profiles in this document are for classification/preconditioning and are not meant to specify board assembly profiles. Actual board assembly profiles should be developed based on specific process needs and board designs and should not exceed the parameters in Table RPC-1. For example, if Tc is 260°C and time tp is 30 seconds, this means the following for the supplier and the user.

For a supplier: The peak temperature must be at least 260°C. The time above 255°C must be at least 30 seconds.

For a user: The peak temperature must not exceed 260°C. The time above 255°C must not exceed 30 seconds.

Note 3: All components in the test load shall meet the classification profile requirements.

Table RPC-2 Pb-Free Process – Classification Temperatures (Tc)

Package Thickness	Volume mm3, <350	Volume mm3, 350 to 2000	Volume mm3, >2000
<1.6 mm	260°C	260°C	260°C
1.6 mm – 2.5 mm	260°C	250°C	245°C
>2.5 mm	250°C	245°C	245°C

Note 1: At the discretion of the device manufacturer, but not the board assembler/user, the maximum peak package body temperature (Tp) can exceed the values specified in Table RPC-2. The use of a higher Tp does not change the classification temperature (Tc).

Note 2: Package volume excludes external terminals (e.g., balls, bumps, lands, leads) and/or non-integral heat sinks.

Note 3: The maximum component temperature reached during reflow depends on package thickness and volume. The use of convection reflow processes reduces the thermal gradients between packages. However, thermal gradients due to differences in thermal mass of SMD packages may still exist.

ORDERING INFORMATION

Part Number	Description	Package
ES9016K2M	Sabre ^{32®} Ultra 32-bit Low Power Stereo Audio DAC	28-pin QFN

The letter K identifies the package type QFN.

Revision History

Rev.	Date	Notes	
1.1	March 19, 2014	Update MCLK requirement	
1.2	April 15, 2014	Update sync_mode requirement	
1.3	May 28, 2014	Update DSD L/R pin assignment. Add THD compensation registers. Update mechanical drawing and add land pattern. Update migration notes	
1.4	June 5, 2014	Added SABRE SOUND [™] trademark	
1.5	July 28, 2014	Updated ESS' FAX number. Added medical usage legal disclaimer	
1.6	August 28, 2014	Added conditions when an external DVDD regulator is required	
1.7	September 8, 2014	Corrected typo on Register#7 Bit [6:5], 3'dX changed to 2'dX. Identified Left and Right channels for Registers #15 and #16 respectively. Updated DAC output impedance from 781.25Ω to 806Ω	
1.8	September 24, 2014	Added "8 bit, Read-Write Register, Default = 0x00" heading on Register #21. Corrected part number on revision marking diagram, page 3. Removed reference to Right Justified data format that is not supported	
1.9	October 16, 2014	Added table to Register #65 description.	
2.0	January 8, 2015	Added details on decoupling required for the DVDD core supply. Deleted old revision history from 0.1 to 0.91.	
2.1	April 10, 2015	Added notes on the connection of reserved Bits in the device control registers. Added SABRE HiFi logo. Updated ESS' address and phone number.	
2.2	June 10, 2015	Increased typical value of AVCC_L plus AVCC_R from 3mA to 8mA	
2.3	December 2, 2016	Correct Recommended Operating Conditions table formatting.	
2.4	January 24, 2017	Corrected THD compensation description and Recommended Operating Conditions table formatting.	
2.5	January 31, 2017	Remove references to Revision W silicon, clarify I2C address description.	
2.6	February 14, 2017	Added description for Registers #2, #3 and #9. Register #65 labeled as GPIO Status. Added register map. Adjusted page number references as needed.	
2.7	November 14, 2018	Added Low Power Audio DAC description, removed Advanced Information	
2.8	March 13, 2019	Removed ESR capacitor requirement for DVDD. Updated SABRE®, SABRE SOUND® and Sabre ^{32®}	
2.9	December 30, 2019	Corrected SDA setup time from SCL rising units from "µs" to "ns".	
3.0	April 27. 2020	Updated analog performance	
3.1	January 7, 2021	Updated I/V converter filter circuit	
3.2	March 26, 2021	Updated Register #9 default value	

ESS' ICs are not intended, authorized, or warranted for use as components in military applications, medical devices or life support systems. ESS assumes no liability whatsoever and disclaims any expressed, implied or statutory warranty for use of ESS IC's in such unsuitable applications.

No part of this publication may be reproduced, stored in a retrieval system, transmitted, or translated in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior written permission of ESS Technology, Inc. ESS Technology, Inc. makes no representations or warranties regarding the content of this document. All specifications are subject to change without prior notice. ESS Technology, Inc. assumes no responsibility for any errors contained herein. U.S. patents pending.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ESS Technology:

ES9016K2M