

32-bit ARM<sup>™</sup> Cortex<sup>™</sup>-M3 based Microcontroller MB9AF111K, MB9AF112K

Data Sheet (Full Production)





# **►M** ■ MB9A110K Series

# 32-bit ARM<sup>™</sup> Cortex<sup>™</sup>-M3 based Microcontroller MB9AF111K, MB9AF112K





# **■ DESCRIPTION**

The MB9A110K Series are a highly integrated 32-bit microcontrollers dedicated for embedded controllers with high-performance and low cost.

These series are based on the ARM Cortex-M3 Processor with on-chip Flash memory and SRAM, and has peripheral functions such as Motor Control Timers, ADCs and Communication Interfaces (UART, CSIO, I<sup>2</sup>C, LIN).

The products which are described in this data sheet are placed into TYPE5 product categories in "FM3 Famliy PERIPHERAL MANUAL".

Note: ARM and Cortex are the trademarks of ARM Limited in the EU and other countries.





# **■ FEATURES**

- 32-bit ARM Cortex-M3 Core
  - Processor version: r2p1
  - Up to 40MHz Frequency Operation
  - Integrated Nested Vectored Interrupt Controller (NVIC) : 1 NMI (non-maskable interrupt) and 48 peripheral interrupts and 16 priority levels
  - 24-bit System timer (Sys Tick): System timer for OS task management

# On-chip Memories

#### [Flash memory]

This Series are based on two independent on-chip Flash memories.

- · MainFlash
  - Up to 128Kbyte
  - Read cycle: 0 wait-cycle
  - · Security function for code protection
- WorkFlash
  - 32Kbyte
  - Read cycle : 0 wait-cycle
  - · Security function is shared with code protection

# [SRAM]

This Series contain a total of up to 16Kbyte on-chip SRAM memories. This is composed of two independent SRAM (SRAM0, SRAM1) . SRAM0 is connected to I-code bus or D-code bus of Cortex-M3 core. SRAM1 is connected to System bus.

SRAM0 : 8 KbyteSRAM1 : 8 Kbyte



# Multi-function Serial Interface (Max 4channels)

- 2 channels with 16-steps × 9-bits FIFO (ch.0, ch.1), 2 channels without FIFO (ch.3, ch.5)
- Operation mode is selectable from the followings for each channel.

(In ch.5, only UART and LIN are available.)

- UART
- · CSIO
- LIN
- I<sup>2</sup>C

#### [UART]

- · Full-duplex double buffer
- · Selection with or without parity supported
- Built-in dedicated baud rate generator
- · External clock available as a serial clock
- Hardware Flow control: Automatically control the transmission by CTS/RTS (only ch.4)
- · Various error detect functions available (parity errors, framing errors, and overrun errors)

#### [CSIO]

- Full-duplex double buffer
- · Built-in dedicated baud rate generator
- · Overrun error detect function available

#### [LIN]

- LIN protocol Rev.2.1 supported
- Full-duplex double buffer
- · Master/Slave mode supported
- LIN break field generate (can be changed 13 to 16-bit length)
- LIN break delimiter generate (can be changed 1 to 4-bit length)
- · Various error detect functions available (parity errors, framing errors, and overrun errors)

#### [l<sup>2</sup>C]

Standard mode (Max 100kbps) / High-speed mode (Max 400kbps) supported

# DMA Controller (4channels)

DMA Controller has an independent bus for CPU, so CPU and DMA Controller can process simultaneously.

- 8 independently configured and operated channels
- Transfer can be started by software or request from the built-in peripherals
- Transfer address area: 32-bit (4Gbyte)
- Transfer mode: Block transfer/Burst transfer/Demand transfer
- · Transfer data type: byte/half-word/word
- Transfer block count: 1 to 16Number of transfers: 1 to 65536

# A/D Converter (Max 8channels)

# [12-bit A/D Converter]

- · Successive Approximation Register type
- · Built-in 2unit
- Conversion time: 1.0µs@5V
- Priority conversion available (priority at 2levels)
- · Scanning conversion mode
- · Built-in FIFO for conversion data storage

(for SCAN conversion: 16steps, for Priority conversion: 4steps)



# Base Timer (Max 8channels)

Operation mode is selectable from the followings for each channel.

- 16-bit PWM timer
- 16-bit PPG timer
- 16/32-bit reload timer
- 16/32-bit PWC timer

#### General Purpose I/O Port

This series can use its pins as General Purpose I/O ports when they are not used for external bus or peripherals. Moreover, the port relocate function is built in. It can set which I/O port the peripheral function can be allocated.

- · Capable of pull-up control per pin
- Capable of reading pin level directly
- Built-in the port relocate function
- Up 36 fast General Purpose I/O Ports
- Some pin is 5V tolerant I/O.

See "■PIN DESCRIPTION" to confirm the corresponding pins.

#### Multi-function Timer

The Multi-function timer is composed of the following blocks.

- 16-bit free-run timer × 3ch.
- Input capture × 4ch.
- Output compare × 6ch.
- A/D activating compare × 3ch.
- Waveform generator × 3ch.
- 16-bit PPG timer  $\times$  3ch.

The following function can be used to achieve the motor control.

- PWM signal output function
- · DC chopper waveform output function
- · Dead time function
- · Input capture function
- A/D convertor activate function
- DTIF (Motor emergency stop) interrupt function

#### Real-time clock (RTC)

The Real-time clock can count Year/Month/Day/Hour/Minute/Second/A day of the week from 01 to 99.

- Interrupt function with specifying date and time (Year/Month/Day/Hour/Minute/Second/A day of the week.) is available. This function is also available by specifying only Year, Month, Day, Hour or Minute.
- Timer interrupt function after set time or each set time.
- · Capable of rewriting the time with continuing the time count.
- · Leap year automatic count is available.



# Quadrature Position/Revolution Counter (QPRC)

The Quadrature Position/Revolution Counter (QPRC) is used to measure the position of the position encoder. Moreover, it is possible to use up/down counter.

- The detection edge of the three external event input pins AIN, BIN and ZIN is configurable.
- 16-bit position counter
- 16-bit revolution counter
- Two 16-bit compare registers

#### Dual Timer (32/16-bit Down Counter)

The Dual Timer consists of two programmable 32/16-bit down counters. Operation mode is selectable from the followings for each channel.

- Free-running
- Periodic (=Reload)
- · One-shot

#### Watch Counter

The Watch counter is used for wake up from Low Power Consumption mode.

Interval timer: up to 64s (Max) @ Sub Clock: 32.768kHz

# External Interrupt Controller Unit

- Up to 6 external interrupt input pin
- Include one non-maskable interrupt (NMI)

#### Watchdog Timer (2channels)

A watchdog timer can generate interrupts or a reset when a time-out value is reached.

This series consists of two different watchdogs, a "Hardware" watchdog and a "Software" watchdog.

"Hardware" watchdog timer is clocked by low-speed internal CR oscillator. Therefore, "Hardware" watchdog is active in any power saving mode except RTC and STOP and Deep stand-by RTC and Deep stand-by STOP.

# • CRC (Cyclic Redundancy Check) Accelerator

The CRC accelerator helps a verify data transmission or storage integrity.

CCITT CRC16 and IEEE-802.3 CRC32 are supported.

- CCITT CRC16 Generator Polynomial: 0x1021
- IEEE-802.3 CRC32 Generator Polynomial: 0x04C11DB7



#### Clock and Reset

# [Clocks]

Five clock sources (2 external oscillators, 2 internal CR oscillator, and Main PLL) that are dynamically selectable.

Main Clock : 4MHz to 48MHz
 Sub Clock : 32.768kHz
 High-speed internal CR Clock : 4MHz
 Low-speed internal CR Clock : 100kHz

· Main PLL Clock

# [Resets]

- · Reset requests from INITX pin
- · Power on reset
- · Software reset
- · Watchdog timers reset
- Low-voltage detector reset
- · Clock supervisor reset

# Clock Super Visor (CSV)

Clocks generated by internal CR oscillators are used to supervise abnormality of the external clocks.

- External OSC clock failure (clock stop) is detected, reset is asserted.
- External OSC frequency anomaly is detected, interrupt or reset is asserted.

# Low-Voltage Detector (LVD)

This Series include 2-stage monitoring of voltage on the VCC pins. When the voltage falls below the voltage has been set, Low-Voltage Detector generates an interrupt or reset.

- · LVD1: error reporting via interrupt
- LVD2: auto-reset operation

# Low Power Consumption Mode

Six Low Power Consumption modes supported.

- · SLEEP
- TIMER
- · RTC
- STOP
- · Deep stand-by RTC
- · Deep stand-by STOP

#### Debug

Serial Wire JTAG Debug Port (SWJ-DP)

# Power Supply

Wide range voltage: VCC = 2.7V to 5.5V



# ■ PRODUCT LINEUP

# Memory size

| Product name    |           | MB9AF111K | MB9AF112K |
|-----------------|-----------|-----------|-----------|
| On-chip         | MainFlash | 64Kbyte   | 128Kbyte  |
| Flash           | WorkFlash | 32Kbyte   | 32Kbyte   |
| 0 1:            | SRAM0     | 8Kbyte    | 8Kbyte    |
| On-chip<br>SRAM | SRAM1     | 8Kbyte    | 8Kbyte    |
|                 | Total     | 16Kbyte   | 16Kbyte   |

# Function

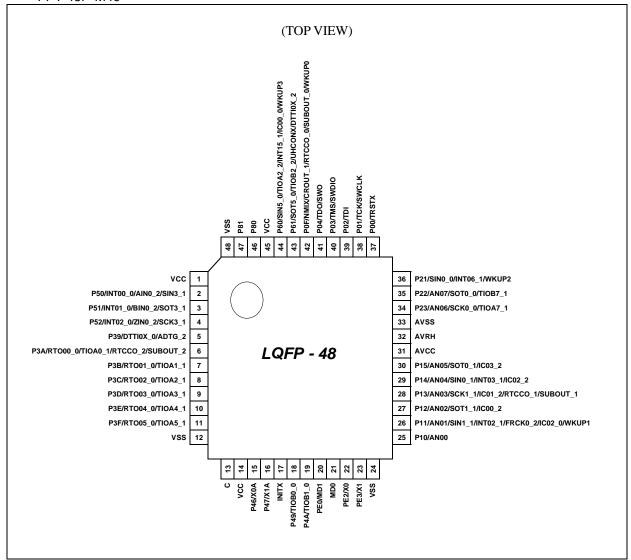
| Product name                           | MB9AF111K                                                            |
|----------------------------------------|----------------------------------------------------------------------|
|                                        | MB9AF112K                                                            |
| Pin count                              | 48/52                                                                |
| CPU                                    | Cortex-M3                                                            |
| Freq.                                  | 40MHz                                                                |
| Power supply voltage range             | 2.7V to 5.5V                                                         |
| DMAC                                   | 4ch. (Max)                                                           |
| Multi-function Serial Interface        | 4ch. (Max)                                                           |
| (UART/CSIO/LIN/I <sup>2</sup> C)       | with 16-steps × 9-bits FIFO: ch.0, ch.1                              |
| D                                      | without FIFO: ch.3, ch.5 (In ch.5, only UART and LIN are available.) |
| Base Timer (PWC/ Reload timer/PWM/PPG) | 8ch. (Max)                                                           |
| A/D activation 3ch. compare            |                                                                      |
| Input capture 4ch.                     |                                                                      |
| MF- Free-run timer 3ch.                | 1 unit (Max)                                                         |
| Output 6ch.                            |                                                                      |
| Waveform generator 3ch.                |                                                                      |
| PPG 3ch.                               |                                                                      |
| QPRC                                   | 1ch. (Max)                                                           |
| Dual Timer                             | 1 unit                                                               |
| Real-time clock                        | 1 unit                                                               |
| Watch Counter                          | 1 unit                                                               |
| CRC Accelerator                        | Yes                                                                  |
| Watchdog timer                         | 1ch. (SW) + 1ch. (HW)                                                |
| External Interrupts                    | 6pins (Max) + NMI × 1                                                |
| General Purpose I/O ports              | 36pins (Max)                                                         |
| 12-bit A/D converter                   | 8ch. (2 units)                                                       |
| CSV (Clock Super Visor)                | Yes                                                                  |
| LVD (Low-Voltage Detector)             | 2ch.                                                                 |
| Internal High-speed                    | 4MHz (±2%)                                                           |
| OSC Low-speed                          | 100kHz (Typ)                                                         |
| Debug Function                         | SWJ-DP                                                               |

Note: All signals of the peripheral function in each product cannot be allocated by limiting the pins of package. It is necessary to use the port relocate function of the General I/O port according to your function use.



# ■ PACKAGES

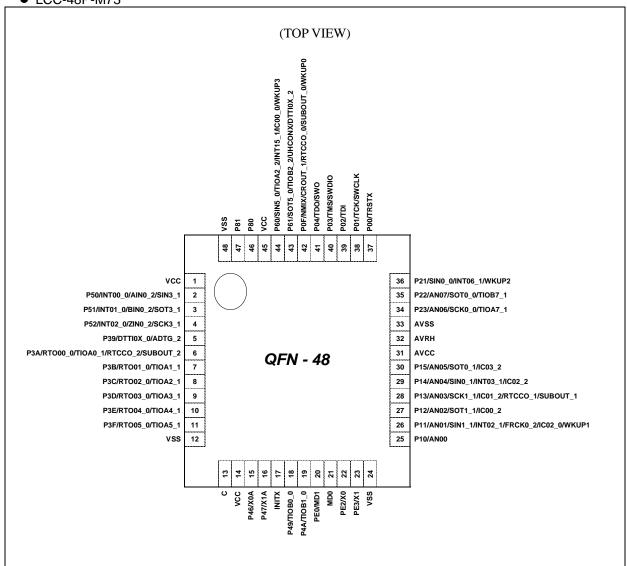
| Product name Package             | MB9AF111K<br>MB9AF112K |
|----------------------------------|------------------------|
| LQFP: FPT-48P-M49 (0.5mm pitch)  | O                      |
| QFN: LCC-48P-M73 (0.5mm pitch)   | O                      |
| LQFP: FPT-52P-M02 (0.65mm pitch) | O                      |


O : Supported

Note : See "■PACKAGE DIMENSIONS" for detailed information on each package.

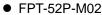


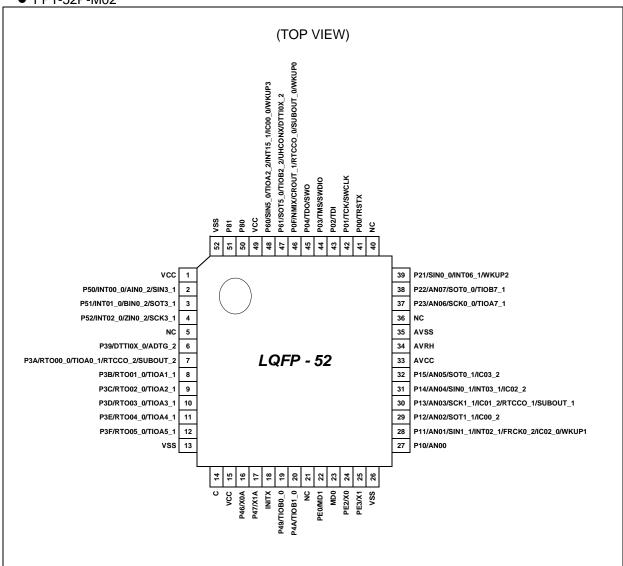
# ■ PIN ASSIGNMENT


• FPT-48P-M49



# <Note>





# • LCC-48P-M73



#### <Note>







#### <Note>



# **■ PIN DESCRIPTION**

| Pin               | No      |          | I/O oirovit         | Din state         |
|-------------------|---------|----------|---------------------|-------------------|
| LQFP-48<br>QFN-48 | LQFP-52 | Pin Name | I/O circuit<br>type | Pin state<br>type |
| 1                 | 1       | VCC      | -                   | _                 |
|                   |         | P50      |                     |                   |
| •                 |         | INT00_0  | <b>T</b> ale        | **                |
| 2                 | 2       | AINO_2   | I *                 | Н                 |
|                   |         | SIN3_1   |                     |                   |
|                   |         | P51      |                     |                   |
| 2                 |         | INT01_0  | <b>T</b> .15        | **                |
| 3                 | 3       | BINO_2   | I *                 | Н                 |
|                   |         | SOT3_1   |                     |                   |
|                   |         | P52      |                     |                   |
| ,                 | , F     | INT02_0  | <b>T</b> .15        | **                |
| 4                 | 4       | ZIN0_2   | I *                 | Н                 |
|                   |         | SCK3_1   |                     |                   |
| -                 | 5       | NC       | -                   | -                 |
|                   |         | P39      |                     |                   |
| 5                 | 6       | DTTI0X_0 | E                   | I                 |
|                   |         | ADTG_2   |                     |                   |
|                   |         | P3A      |                     | -                 |
|                   |         | RTO00_0  |                     |                   |
| 6                 | 7       | TIOA0_1  | G                   | I                 |
|                   |         | RTCCO_2  |                     |                   |
|                   |         | SUBOUT_2 |                     |                   |
|                   |         | P3B      |                     |                   |
| 7                 | 8       | RTO01_0  | G                   | I                 |
|                   |         | TIOA1_1  |                     |                   |
|                   |         | P3C      |                     |                   |
| 8                 | 9       | RTO02_0  | G                   | I                 |
|                   |         | TIOA2_1  |                     |                   |
|                   |         | P3D      |                     |                   |
| 9                 | 10      | RTO03_0  | G                   | I                 |
|                   |         | TIOA3_1  |                     |                   |
|                   |         | P3E      |                     |                   |
| 10                | 11      | RTO04_0  | G                   | I                 |
|                   |         | TIOA4_1  |                     |                   |
|                   |         | P3F      |                     |                   |
| 11                | 12      | RTO05_0  | G                   | I                 |
|                   |         | TIOA5_1  |                     |                   |
| 12                | 13      | VSS      | -                   | -                 |



| Pin No            |                                                  |           | I/O circuit | Pin state |
|-------------------|--------------------------------------------------|-----------|-------------|-----------|
| LQFP-48<br>QFN-48 | LQFP-52                                          | Pin Name  | type        | type      |
| 13                | 14                                               | С         | -           | -         |
| 14                | 15                                               | VCC       | -           | -         |
| 15                | 16                                               | P46       | D           | M         |
| 13                | 10                                               | X0A       | D           |           |
| 16                | 17                                               | P47       | D           | N         |
|                   |                                                  | X1A       |             |           |
| 17                | 18                                               | INITX     | В           | С         |
| 18                | 19                                               | P49       | E           | I         |
|                   |                                                  | TIOB0_0   |             |           |
| 19                | 20                                               | P4A       | E           | I         |
|                   |                                                  | TIOB1_0   |             |           |
| -                 | 21                                               | NC NC     | -           | -         |
| 20                | 22                                               | PE0       | C           | P         |
|                   | 22                                               | MD1       |             | -         |
| 21                | 23                                               | MD0       | J           | D         |
| 22                | 24                                               | PE2       | A           | A         |
|                   |                                                  | X0        |             |           |
| 23                | 25                                               | PE3       | A           | В         |
| 24                | 26                                               | X1<br>VSS |             |           |
| 24                | 26                                               | P10       | -           | -         |
| 25                | 27                                               | AN00      | F           | K         |
|                   |                                                  | P11       |             |           |
|                   | -                                                | AN01      |             | F         |
|                   | -                                                | SIN1_1    |             |           |
| 26                | 28                                               | INT02_1   | F           |           |
| 20                | 20                                               | FRCK0_2   |             |           |
|                   |                                                  | IC02_0    |             |           |
|                   |                                                  | WKUP1     |             |           |
|                   |                                                  | P12       |             |           |
|                   |                                                  | AN02      |             |           |
| 27                | 29                                               | SOT1_1    | F           | K         |
|                   |                                                  | IC00_2    |             |           |
|                   |                                                  | P13       |             |           |
|                   |                                                  | AN03      |             |           |
| • •               | 20                                               | SCK1_1    |             | ***       |
| 28                | 30                                               | IC01_2    | F           | K         |
|                   | <del>                                     </del> | RTCCO_1   |             |           |
|                   |                                                  | SUBOUT_1  |             |           |
|                   |                                                  | P14       |             |           |
|                   |                                                  | AN04      |             |           |
| 29                | 31                                               | SINO_1    | F           | L         |
|                   |                                                  | INT03_1   |             |           |
|                   | [                                                | IC02_2    |             |           |



| Pin No            |         |          | I/O oirovit         | Din state         |
|-------------------|---------|----------|---------------------|-------------------|
| LQFP-48<br>QFN-48 | LQFP-52 | Pin Name | I/O circuit<br>type | Pin state<br>type |
|                   |         | P15      |                     |                   |
|                   |         | AN05     | _                   |                   |
| 30                | 32      | SOT0_1   | F                   | K                 |
|                   |         | IC03_2   |                     |                   |
| 31                | 33      | AVCC     |                     | -                 |
| 32                | 34      | AVRH     |                     | -                 |
| 33                | 35      | AVSS     |                     | -                 |
| -                 | 36      | NC       |                     | -                 |
|                   |         | P23      |                     |                   |
| 24                | 27      | AN06     | Г.                  | 17                |
| 34                | 37      | SCK0_0   | F                   | K                 |
|                   |         | TIOA7_1  |                     |                   |
|                   |         | P22      |                     |                   |
| 25                | 20      | AN07     |                     | V                 |
| 35                | 38      | SOT0_0   | F                   | K                 |
|                   |         | TIOB7_1  |                     |                   |
|                   |         | P21      |                     | G                 |
| 36                | 39      | SIN0_0   | E                   |                   |
| 30                | 39      | INT06_1  | Е                   |                   |
|                   |         | WKUP2    |                     |                   |
| -                 | 40      | NC       |                     | -                 |
| 37                | 41      | P00      | Е                   | Е                 |
| 37                | 41      | TRSTX    | E                   | E                 |
|                   |         | P01      |                     | Е                 |
| 38                | 42      | TCK      | Е                   |                   |
|                   |         | SWCLK    |                     |                   |
| 20                | 42      | P02      | Г                   | Г                 |
| 39                | 43      | TDI      | E                   | Е                 |
|                   |         | P03      |                     |                   |
| 40                | 44      | TMS      | E                   | Е                 |
|                   |         | SWDIO    |                     |                   |
|                   |         | P04      |                     |                   |
| 41                | 45      | TDO      | E                   | Е                 |
|                   |         | SWO      |                     |                   |
|                   |         | P0F      |                     |                   |
|                   |         | NMIX     |                     |                   |
| 42                | 16      | CROUT_1  |                     | т                 |
| 42                | 46      | RTCCO_0  | E                   | J                 |
|                   |         | SUBOUT_0 |                     |                   |
|                   |         | WKUP0    |                     |                   |
|                   |         | P61      |                     |                   |
|                   |         | SOT5_0   |                     |                   |
| 43                | 47      | TIOB2_2  | Е                   | I                 |
|                   |         | UHCONX   |                     |                   |
|                   |         | DTTI0X_2 |                     |                   |



| Pin No            |         |          | I/O circuit | Pin state |
|-------------------|---------|----------|-------------|-----------|
| LQFP-48<br>QFN-48 | LQFP-52 | Pin Name | type        | type      |
|                   |         | P60      |             |           |
|                   |         | SIN5_0   |             | G         |
| 44                | 48      | TIOA2_2  | I *         |           |
| 44                |         | INT15_1  |             |           |
|                   |         | IC00_0   |             |           |
|                   |         | WKUP3    |             |           |
| 45                | 49      | VCC      |             | -         |
| 46                | 50      | P80      | Н           | О         |
| 47                | 51      | P81      | Н           | О         |
| 48                | 52      | VSS      |             | -         |

<sup>\*: 5</sup>V tolerant I/O



# ■ SIGNAL DESCRIPTION

|                 |          |                                                   |                   | No      |
|-----------------|----------|---------------------------------------------------|-------------------|---------|
| Module          | Pin name | Function                                          | LQFP-48<br>QFN-48 | LQFP-52 |
| ADC             | ADTG_2   | A/D converter external trigger input pin          | 5                 | 6       |
|                 | AN00     |                                                   | 25                | 27      |
|                 | AN01     |                                                   | 26                | 28      |
|                 | AN02     |                                                   | 27                | 29      |
|                 | AN03     | A/D converter analog input pin.                   | 28                | 30      |
|                 | AN04     | ANxx describes ADC ch.xx.                         | 29                | 31      |
|                 | AN05     |                                                   | 30                | 32      |
|                 | AN06     |                                                   | 34                | 37      |
|                 | AN07     |                                                   | 35                | 38      |
| Base Timer      | TIOA0_1  | Base timer ch.0 TIOA pin                          | 6                 | 7       |
| 0               | TIOB0_0  | Base timer ch.0 TIOB pin                          | 18                | 19      |
| Base Timer      | TIOA1_1  | Base timer ch.1 TIOA pin                          | 7                 | 8       |
| 1               | TIOB1_0  | Base timer ch.1 TIOB pin                          | 19                | 20      |
| Base Timer      | TIOA2_1  | D. C. LOTTO A.                                    | 8                 | 9       |
| 2               | TIOA2_2  | Base timer ch.2 TIOA pin                          | 44                | 48      |
|                 | TIOB2_2  | Base timer ch.2 TIOB pin                          | 43                | 47      |
| Base Timer 3    | TIOA3_1  | Base timer ch.3 TIOA pin                          | 9                 | 10      |
| Base Timer<br>4 | TIOA4_1  | Base timer ch.4 TIOA pin                          | 10                | 11      |
| Base Timer 5    | TIOA5_1  | Base timer ch.5 TIOA pin                          | 11                | 12      |
| Base Timer      | TIOA7_1  | Base timer ch.7 TIOA pin                          | 34                | 37      |
| 7               | TIOB7_1  | Base timer ch.7 TIOB pin                          | 35                | 38      |
| Debugger        | SWCLK    | Serial wire debug interface clock input pin       | 38                | 42      |
|                 | SWDIO    | Serial wire debug interface data input/output pin | 40                | 44      |
|                 | SWO      | Serial wire viewer output pin                     | 41                | 45      |
|                 | TCK      | J-TAG test clock input pin                        | 38                | 42      |
|                 | TDI      | J-TAG test data input pin                         | 39                | 43      |
|                 | TDO      | J-TAG debug data output pin                       | 41                | 45      |
|                 | TMS      | J-TAG test mode state input/output pin            | 40                | 44      |
|                 | TRSTX    | J-TAG test reset Input pin                        | 37                | 41      |
| External        | INT00_0  | External interrupt request 00 input pin           | 2                 | 2       |
| Interrupt       | INT01_0  | External interrupt request 01 input pin           | 3                 | 3       |
| •               | INT02_0  |                                                   | 4                 | 4       |
|                 | INT02_1  | External interrupt request 02 input pin           | 26                | 28      |
|                 | INT03_1  | External interrupt request 03 input pin           | 29                | 31      |
|                 | INT06_1  | External interrupt request 06 input pin           | 36                | 39      |
|                 | INT15_1  | External interrupt request 15 input pin           | 44                | 48      |
| -               | NMIX     | Non-Maskable Interrupt input pin                  | 42                | 46      |



|        |          |                            |                   | No      |
|--------|----------|----------------------------|-------------------|---------|
| Module | Pin name | Function                   | LQFP-48<br>QFN-48 | LQFP-52 |
| GPIO   | P00      |                            | 37                | 41      |
|        | P01      |                            | 38                | 42      |
|        | P02      | Consul assess I/O and O    | 39                | 43      |
|        | P03      | General-purpose I/O port 0 | 40                | 44      |
|        | P04      | 41                         | 41                | 45      |
|        | P0F      |                            | 42                | 46      |
|        | P10      |                            | 25                | 27      |
|        | P11      |                            | 26                | 28      |
|        | P12      | Consul assess I/O and 1    | 27                | 29      |
|        | P13      | General-purpose I/O port 1 | 28                | 30      |
|        | P14      |                            | 29                | 31      |
|        | P15      |                            | 30                | 32      |
|        | P21      |                            | 36                | 39      |
|        | P22      | General-purpose I/O port 2 | 35                | 38      |
|        | P23      | P23                        | 34                | 37      |
|        | P39      |                            | 5                 | 6       |
|        | P3A      |                            | 6                 | 7       |
|        | P3B      |                            | 7                 | 8       |
|        | P3C      | General-purpose I/O port 3 | 8                 | 9       |
|        | P3D      |                            | 9                 | 10      |
|        | P3E      |                            | 10                | 11      |
|        | P3F      |                            | 11                | 12      |
|        | P46      |                            | 15                | 16      |
|        | P47      | General-purpose I/O port 4 | 16                | 17      |
|        | P49      | General-purpose 1/O port 4 | 18                | 19      |
|        | P4A      |                            | 19                | 20      |
|        | P50      |                            | 2                 | 2       |
|        | P51      | General-purpose I/O port 5 | 3                 | 3       |
|        | P52      |                            | 4                 | 4       |
|        | P60      | Ganaral purposa I/O port 6 | 44                | 48      |
|        | P61      | General-purpose I/O port 6 | 43                | 47      |
|        | P80      | General-purpose I/O port 8 | 46                | 50      |
|        | P81      | General-purpose 1/O port 8 | 47                | 51      |
|        | PE0      |                            | 20                | 22      |
|        | PE2      | General-purpose I/O port E | 22                | 24      |
|        | PE3      |                            | 23                | 25      |



|                    |                    |                                                                                                                                                                                                                | Pin               | No.     |
|--------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------|
| Module             | Pin name           | Function                                                                                                                                                                                                       | LQFP-48<br>QFN-48 | LQFP-52 |
| Multi-             | SINO_0             | Multi-function serial interface ch.0 input                                                                                                                                                                     | 36                | 39      |
| function           | SIN0_1             | pin                                                                                                                                                                                                            | 29                | 31      |
| Serial<br>0        | SOT0_0<br>(SDA0_0) | Multi-function serial interface ch.0 output pin. This pin operates as SOT0 when it is used                                                                                                                     | 35                | 38      |
|                    | SOT0_1<br>(SDA0_1) | in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA0 when it is used in an I <sup>2</sup> C (operation mode 4).                                                                                             | 30                | 32      |
|                    | SCK0_0<br>(SCL0_0) | Multi-function serial interface ch.0 clock I/O pin.  This pin operates as SCK0 when it is used in a CSIO (operation modes 2) and as SCL0 when it is used in an I <sup>2</sup> C (operation mode 4).            | 34                | 37      |
| Multi-<br>function | SIN1_1             | Multi-function serial interface ch.1 input pin                                                                                                                                                                 | 26                | 28      |
| Serial<br>1        | SOT1_1<br>(SDA1_1) | Multi-function serial interface ch.1 output pin.  This pin operates as SOT1 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA1 when it is used in an I <sup>2</sup> C (operation mode 4). | 27                | 29      |
|                    | SCK1_1<br>(SCL1_1) | Multi-function serial interface ch.1 clock I/O pin.  This pin operates as SCK1 when it is used in a CSIO (operation modes 2) and as SCL1 when it is used in an I <sup>2</sup> C (operation mode 4).            | 28                | 30      |

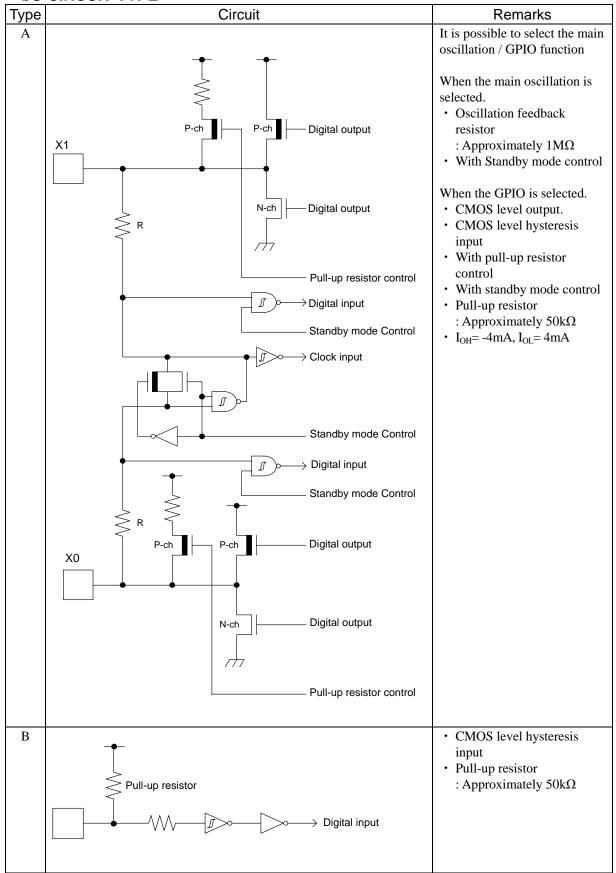


|                    |                    |                                                                                                                                                                                                               | Pin No.           |         |
|--------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------|
| Module             | Pin name           | Function                                                                                                                                                                                                      | LQFP-48<br>QFN-48 | LQFP-52 |
| Multi-<br>function | SIN3_1             | Multi-function serial interface ch.3 input pin                                                                                                                                                                | 2                 | 2       |
| Serial<br>3        | SOT3_1<br>(SDA3_1) | Multi-function serial interface ch.3 output pin. This pin operates as SOT3 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA3 when it is used in an I <sup>2</sup> C (operation mode 4). | 3                 | 3       |
|                    | SCK3_1<br>(SCL3_1) | Multi-function serial interface ch.3 clock I/O pin.  This pin operates as SCK3 when it is used in a CSIO (operation modes 2) and as SCL3 when it is used in an I <sup>2</sup> C (operation mode 4).           | 4                 | 4       |
| Multi-<br>function | SIN5_0             | Multi-function serial interface ch.5 input pin                                                                                                                                                                | 44                | 48      |
| Serial<br>5        | SOT5_0             | Multi-function serial interface ch.5 output pin. This pin operates as SOT5 when it is used in a UART/LIN (operation modes 0, 1, 3).                                                                           | 43                | 47      |

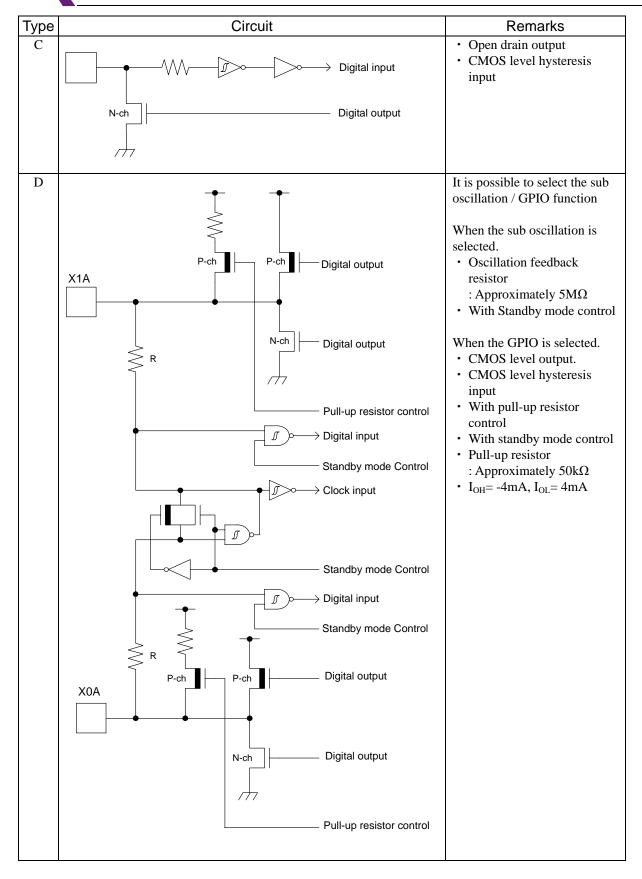


|                    |                      |                                                                                                                            |                   | No      |
|--------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------|---------|
| Module             | Pin name             | Function                                                                                                                   | LQFP-48<br>QFN-48 | LQFP-52 |
| Multi-<br>function | DTTI0X_0             | Input signal controlling wave form generator outputs RTO00 to RTO05 of multi-function timer 0.                             | 5                 | 6       |
| Timer              | DTTI0X_2             |                                                                                                                            | 43                | 47      |
| 0                  | FRCK0_2              | 16-bit free-run timer ch.0 external clock input pin                                                                        | 26                | 28      |
|                    | IC00_0               |                                                                                                                            | 44                | 48      |
|                    | IC00_2               |                                                                                                                            | 27                | 29      |
|                    | IC01_2               | 16-bit input capture ch.0 input pin of                                                                                     | 28                | 30      |
|                    | IC02_0               | multi-function timer 0.  ICxx describes channel number.                                                                    | 26                | 28      |
|                    | IC02 2               | - Texx describes channel number.                                                                                           | 29                | 31      |
|                    | IC03_2               |                                                                                                                            | 30                | 32      |
|                    | RTO00_0<br>(PPG00_0) | Wave form generator output pin of multi-function timer 0. This pin operates as PPG00 when it is used in PPG0 output modes. | 6                 | 7       |
|                    | RTO01_0<br>(PPG00_0) | Wave form generator output pin of multi-function timer 0. This pin operates as PPG00 when it is used in PPG0 output modes. | 7                 | 8       |
|                    | RTO02_0<br>(PPG02_0) | Wave form generator output pin of multi-function timer 0. This pin operates as PPG02 when it is used in PPG0 output modes. | 8                 | 9       |
|                    | RTO03_0<br>(PPG02_0) | Wave form generator output pin of multi-function timer 0. This pin operates as PPG02 when it is used in PPG0 output modes. | 9                 | 10      |
|                    | RTO04_0<br>(PPG04_0) | Wave form generator output pin of multi-function timer 0. This pin operates as PPG04 when it is used in PPG0 output modes. | 10                | 11      |
|                    | RTO05_0<br>(PPG04_0) | Wave form generator output pin of multi-function timer 0. This pin operates as PPG04 when it is used in PPG0 output modes. | 11                | 12      |

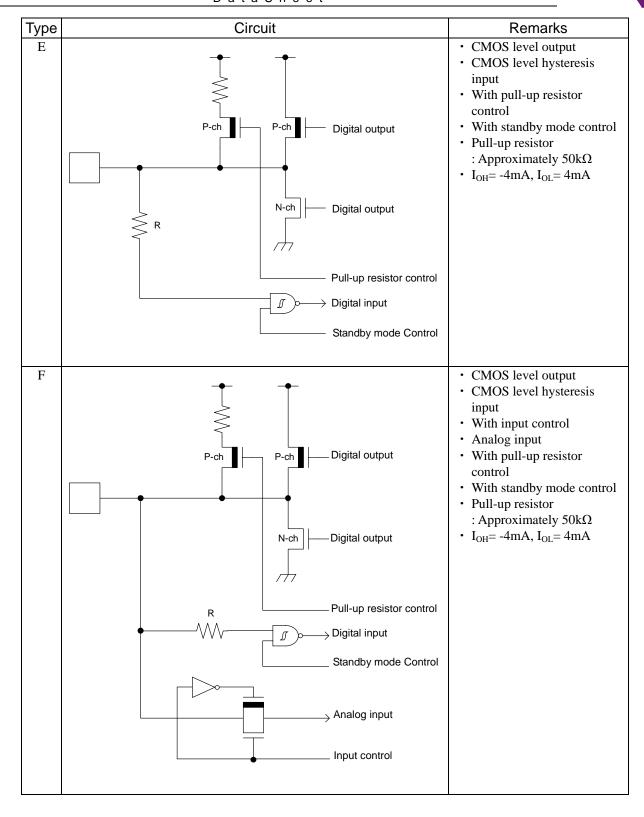



| Module                                    | Pin name | Function                                            | Pin No            |         |
|-------------------------------------------|----------|-----------------------------------------------------|-------------------|---------|
|                                           |          |                                                     | LQFP-48<br>QFN-48 | LQFP-52 |
| Quadrature Position/ Revolution Counter 0 | AIN0_2   | QPRC ch.0 AIN input pin                             | 2                 | 2       |
|                                           | BIN0_2   | QPRC ch.0 BIN input pin                             | 3                 | 3       |
|                                           | ZIN0_2   | QPRC ch.0 ZIN input pin                             | 4                 | 4       |
| Real-time                                 | RTCCO_0  | 0.5 seconds pulse output pin of Real-time clock pin | 42                | 46      |
| clock                                     | RTCCO_1  |                                                     | 28                | 30      |
|                                           | RTCCO_2  |                                                     | 6                 | 7       |
|                                           | SUBOUT_0 | Sub clock output pin                                | 42                | 46      |
|                                           | SUBOUT_1 |                                                     | 28                | 30      |
|                                           | SUBOUT_2 |                                                     | 6                 | 7       |
| Low Power<br>Consumption<br>Mode          | WKUP0    | Deep stand-by mode return signal input pin 0        | 42                | 46      |
|                                           | WKUP1    | Deep stand-by mode return signal input pin 1        | 26                | 28      |
|                                           | WKUP2    | Deep stand-by mode return signal input pin 2        | 36                | 39      |
|                                           | WKUP3    | Deep stand-by mode return signal input pin 3        | 44                | 48      |




|              | Pin name | Function                                                                                                                       | Pin No            |         |
|--------------|----------|--------------------------------------------------------------------------------------------------------------------------------|-------------------|---------|
| Module       |          |                                                                                                                                | LQFP-48<br>QFN-48 | LQFP-52 |
| RESET        | INITX    | External Reset Input. A reset is valid when INITX="L".                                                                         | 17                | 18      |
| Mode         | MD0      | Mode 0 pin.  During normal operation, MD0="L" must be input. During serial programming to Flash memory, MD0="H" must be input. | 21                | 23      |
|              | MD1      | Mode 1 pin. During serial programming to Flash memory, MD1="L" must be input.                                                  | 20                | 22      |
| POWER        | VCC      | Power supply Pin                                                                                                               | 1                 | 1       |
|              | VCC      | Power supply Pin                                                                                                               | 14                | 15      |
|              | VCC      | Power supply Pin                                                                                                               | 45                | 49      |
| GND          | VSS      | GND Pin                                                                                                                        | 12                | 13      |
|              | VSS      | GND Pin                                                                                                                        | 24                | 26      |
|              | VSS      | GND Pin                                                                                                                        | 48                | 52      |
| CLOCK        | X0       | Main clock (oscillation) input pin                                                                                             | 22                | 24      |
|              | X0A      | Sub clock (oscillation) input pin                                                                                              | 15                | 16      |
|              | X1       | Main clock (oscillation) I/O pin                                                                                               | 23                | 25      |
|              | X1A      | Sub clock (oscillation) I/O pin                                                                                                | 16                | 17      |
|              | CROUT_1  | Internal CR-osc clock output port                                                                                              | 42                | 46      |
| ADC<br>POWER | AVCC     | A/D converter analog power pin                                                                                                 | 31                | 33      |
|              | AVRH     | A/D converter analog reference voltage input pin                                                                               | 32                | 34      |
| ADC<br>GND   | AVSS     | A/D converter GND pin                                                                                                          | 33                | 35      |
| C pin        | С        | Power stabilization capacity pin                                                                                               | 13                | 14      |
| NC pin       | NC       | NC pin. NC pin should be kept open.                                                                                            | -                 | 5       |
|              | NC       | NC pin. NC pin should be kept open.                                                                                            | -                 | 21      |
|              | NC       | NC pin. NC pin should be kept open.                                                                                            | -                 | 36      |
|              | NC       | NC pin. NC pin should be kept open.                                                                                            | -                 | 40      |




# ■ I/O CIRCUIT TYPE













| Туре | Circuit                                                                               | Remarks                                                                                                                                                                                                                                                                             |
|------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| G    | P-ch Digital output  R  Pull-up resistor control  Digital input  Standby mode Control | <ul> <li>CMOS level output</li> <li>CMOS level hysteresis input</li> <li>With pull-up resistor control</li> <li>With standby mode control</li> <li>Pull-up resistor         <ul> <li>Approximately 50kΩ</li> </ul> </li> <li>I<sub>OH</sub>= -12mA, I<sub>OL</sub>= 12mA</li> </ul> |
| Н    | P-ch Digital output  R  Digital output  Standby mode Control                          | <ul> <li>CMOS level output</li> <li>CMOS level hysteresis input</li> <li>With standby mode control</li> <li>I<sub>OH</sub>= -20.5mA, I<sub>OL</sub>=18.5mA</li> </ul>                                                                                                               |



| Type | Circuit                                                                               | Remarks                                                                                                                                                                                                                                                                                                                                        |
|------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I    | P-ch Digital output  R  Pull-up resistor control  Digital input  Standby mode Control | <ul> <li>CMOS level output</li> <li>CMOS level hysteresis input</li> <li>5V tolerant</li> <li>With pull-up resistor control</li> <li>With standby mode control</li> <li>Pull-up resistor <ul> <li>Approximately 50kΩ</li> </ul> </li> <li>I<sub>OH</sub>= -4mA, I<sub>OL</sub>= 4mA</li> <li>Available to control of PZR registers.</li> </ul> |
| J    | Mode input                                                                            | CMOS level hysteresis input                                                                                                                                                                                                                                                                                                                    |



#### ■ HANDLING PRECAUTIONS

Any semiconductor devices have inherently a certain rate of failure. The possibility of failure is greatly affected by the conditions in which they are used (circuit conditions, environmental conditions, etc.). This page describes precautions that must be observed to minimize the chance of failure and to obtain higher reliability from your Spansion semiconductor devices.

#### 1. Precautions for Product Design

This section describes precautions when designing electronic equipment using semiconductor devices.

#### Absolute Maximum Ratings

Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of certain established limits, called absolute maximum ratings. Do not exceed these ratings.

# · Recommended Operating Conditions

Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.

Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their sales representative beforehand.

#### • Processing and Protection of Pins

These precautions must be followed when handling the pins which connect semiconductor devices to power supply and input/output functions.

# (1) Preventing Over-Voltage and Over-Current Conditions

Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause deterioration within the device, and in extreme cases leads to permanent damage of the device. Try to prevent such overvoltage or over-current conditions at the design stage.

#### (2) Protection of Output Pins

Shorting of output pins to supply pins or other output pins, or connection to large capacitance can cause large current flows. Such conditions if present for extended periods of time can damage the device.

Therefore, avoid this type of connection.

#### (3) Handling of Unused Input Pins

Unconnected input pins with very high impedance levels can adversely affect stability of operation. Such pins should be connected through an appropriate resistance to a power supply pin or ground pin.

#### · Latch-up

Semiconductor devices are constructed by the formation of P-type and N-type areas on a substrate. When subjected to abnormally high voltages, internal parasitic PNPN junctions (called thyristor structures) may be formed, causing large current levels in excess of several hundred mA to flow continuously at the power supply pin. This condition is called latch-up.

CAUTION: The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or damage from high heat, smoke or flame. To prevent this from happening, do the following:

- (1) Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to abnormal noise, surge levels, etc.
- (2) Be sure that abnormal current flows do not occur during the power-on sequence.

Code: DS00-00004-1Ea



# • Observance of Safety Regulations and Standards

Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic interference, etc. Customers are requested to observe applicable regulations and standards in the design of products.

#### · Fail-Safe Design

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

# • Precautions Related to Usage of Devices

Spansion semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

#### 2. Precautions for Package Mounting

Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance during soldering, you should only mount under Spansion's recommended conditions. For detailed information about mount conditions, contact your sales representative.

#### · Lead Insertion Type

Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct soldering on the board, or mounting by using a socket.

Direct mounting onto boards normally involves processes for inserting leads into through-holes on the board and using the flow soldering (wave soldering) method of applying liquid solder. In this case, the soldering process usually causes leads to be subjected to thermal stress in excess of the absolute ratings for storage temperature. Mounting processes should conform to Spansion recommended mounting conditions.

If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can lead to contact deterioration after long periods. For this reason it is recommended that the surface treatment of socket contacts and IC leads be verified before mounting.

#### · Surface Mount Type

Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads are more easily deformed or bent. The use of packages with higher pin counts and narrower pin pitch results in increased susceptibility to open connections caused by deformed pins, or shorting due to solder bridges.

You must use appropriate mounting techniques. Spansion recommends the solder reflow method, and has established a ranking of mounting conditions for each product. Users are advised to mount packages in accordance with Spansion ranking of recommended conditions.



#### · Lead-Free Packaging

CAUTION: When ball grid array (BGA) packages with Sn-Ag-Cu balls are mounted using Sn-Pb eutectic soldering, junction strength may be reduced under some conditions of use.

#### · Storage of Semiconductor Devices

Because plastic chip packages are formed from plastic resins, exposure to natural environmental conditions will cause absorption of moisture. During mounting, the application of heat to a package that has absorbed moisture can cause surfaces to peel, reducing moisture resistance and causing packages to crack. To prevent, do the following:

- (1) Avoid exposure to rapid temperature changes, which cause moisture to condense inside the product. Store products in locations where temperature changes are slight.
- (2) Use dry boxes for product storage. Products should be stored below 70% relative humidity, and at temperatures between 5°C and 30°C.

  When you open Dry Package that recommends humidity 40% to 70% relative humidity.
- (3) When necessary, Spansion packages semiconductor devices in highly moisture-resistant aluminum laminate bags, with a silica gel desiccant. Devices should be sealed in their aluminum laminate bags for storage.
- (4) Avoid storing packages where they are exposed to corrosive gases or high levels of dust.

#### · Baking

Packages that have absorbed moisture may be de-moisturized by baking (heat drying). Follow the Spansion recommended conditions for baking.

Condition: 125°C/24 h

#### Static Electricity

Because semiconductor devices are particularly susceptible to damage by static electricity, you must take the following precautions:

- (1) Maintain relative humidity in the working environment between 40% and 70%. Use of an apparatus for ion generation may be needed to remove electricity.
- (2) Electrically ground all conveyors, solder vessels, soldering irons and peripheral equipment.
- (3) Eliminate static body electricity by the use of rings or bracelets connected to ground through high resistance (on the level of 1 MΩ). Wearing of conductive clothing and shoes, use of conductive floor mats and other measures to minimize shock loads is recommended.
- (4) Ground all fixtures and instruments, or protect with anti-static measures.
- (5) Avoid the use of styrofoam or other highly static-prone materials for storage of completed board assemblies.



#### 3. Precautions for Use Environment

Reliability of semiconductor devices depends on ambient temperature and other conditions as described above.

For reliable performance, do the following:

#### (1) Humidity

Prolonged use in high humidity can lead to leakage in devices as well as printed circuit boards. If high humidity levels are anticipated, consider anti-humidity processing.

#### (2) Discharge of Static Electricity

When high-voltage charges exist close to semiconductor devices, discharges can cause abnormal operation. In such cases, use anti-static measures or processing to prevent discharges.

#### (3) Corrosive Gases, Dust, or Oil

Exposure to corrosive gases or contact with dust or oil may lead to chemical reactions that will adversely affect the device. If you use devices in such conditions, consider ways to prevent such exposure or to protect the devices.

# (4) Radiation, Including Cosmic Radiation

Most devices are not designed for environments involving exposure to radiation or cosmic radiation. Users should provide shielding as appropriate.

#### (5) Smoke, Flame

CAUTION: Plastic molded devices are flammable, and therefore should not be used near combustible substances. If devices begin to smoke or burn, there is danger of the release of toxic gases. Customers considering the use of Spansion products in other special environmental conditions should consult with sales representatives.

Please check the latest handling precautions at the following URL. http://www.spansion.com/fjdocuments/fj/datasheet/e-ds/DS00-00004.pdf

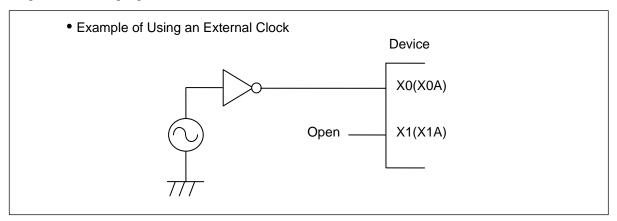


# ■ HANDLING DEVICES

# Power supply pins

In products with multiple VCC and VSS pins, respective pins at the same potential are interconnected within the device in order to prevent malfunctions such as latch-up. However, all of these pins should be connected externally to the power supply or ground lines in order to reduce electromagnetic emission levels, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total output current rating.

Moreover, connect the current supply source with each Power supply pins and GND pins of this device at low impedance. It is also advisable that a ceramic capacitor of approximately  $0.1~\mu F$  be connected as a bypass capacitor between each Power supply pins and GND pins near this device.


#### Crystal oscillator circuit

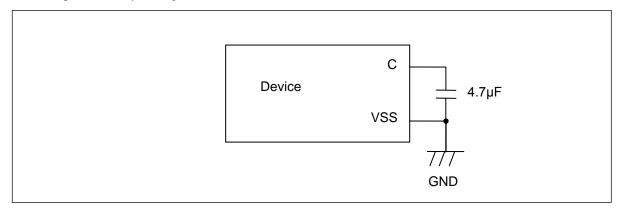
Noise near the X0/X1 and X0A/X1A pins may cause the device to malfunction. Design the printed circuit board so that X0/X1, X0A/X1A pins, the crystal oscillator (or ceramic oscillator), and the bypass capacitor to ground are located as close to the device as possible.

It is strongly recommended that the PC board artwork be designed such that the X0/X1 and X0A/X1A pins are surrounded by ground plane as this is expected to produce stable operation.

#### Using an external clock

When using an external clock, the clock signal should be input to the X0, X0A pin only and the X1, X1A pin should be kept open.




# • Handling when using Multi-function serial pin as I<sup>2</sup>C pin

If it is using Multi-function serial pin as  $I^2C$  pins, P-ch transistor of digital output is always disable. However,  $I^2C$  pins need to keep the electrical characteristic like other pins and not to connect to external  $I^2C$  bus system with power OFF.



#### • C pin

As this series includes an internal regulator, always connect a bypass capacitor of approximately  $4.7~\mu F$  to the C pin for use by the regulator.



# Mode pins (MD0)

Connect the MD pin (MD0) directly to VCC or VSS pins. Design the printed circuit board such that the pull-up/down resistance stays low, as well as the distance between the mode pins and VCC pins or VSS pins is as short as possible and the connection impedance is low, when the pins are pulled-up/down such as for switching the pin level and rewriting the Flash memory data. It is because of preventing the device erroneously switching to test mode due to noise.

#### NC pins

NC pin should be kept open.

# Notes on power-on

Turn power on/off in the following order or at the same time.

If not using the A/D converter, connect AVCC = VCC and AVSS = VSS.

Turning on :VCC  $\rightarrow$  AVCC  $\rightarrow$  AVRH Turning off : AVRH  $\rightarrow$  AVCC  $\rightarrow$  VCC

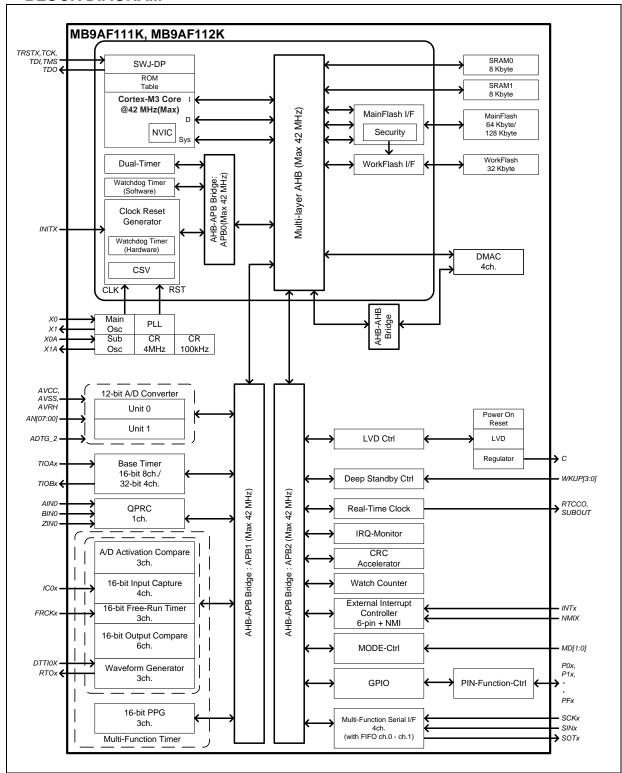
# Serial Communication

There is a possibility to receive wrong data due to the noise or other causes on the serial communication. Therefore, design a printed circuit board so as to avoid noise.

Consider the case of receiving wrong data due to noise, perform error detection such as by applying a checksum of data at the end. If an error is detected, retransmit the data.

# Differences in features among the products with different memory sizes and between Flash products and MASK products

The electric characteristics including power consumption, ESD, latch-up, noise characteristics, and oscillation characteristics among the products with different memory sizes and between Flash products and MASK products are different because chip layout and memory structures are different.


If you are switching to use a different product of the same series, please make sure to evaluate the electric characteristics.

# Pull-Up function of 5V tolerant I/O

Please do not input the signal more than VCC voltage at the time of Pull-Up function use of 5V tolerant I/O.



# ■ BLOCK DIAGRAM



# **■ MEMORY SIZE**

See "●Memory size" in "■PRODUCT LINEUP" to confirm the memory size.



# ■ MEMORY MAP

|                        |                            |                           | !        | - 0x41FF_FFFF              | Peripherals Area |
|------------------------|----------------------------|---------------------------|----------|----------------------------|------------------|
|                        |                            |                           |          |                            | Reserved         |
|                        | 0xFFFF_FFFF                |                           | ]        | 0x4006_1000                | DMAG             |
|                        |                            | Reserved                  |          | 0x4006_0000                | DMAC             |
|                        | 0xE010_0000                |                           | į        |                            |                  |
|                        |                            | Cortex-M3 Private         | ;        |                            |                  |
|                        | 0xE000_0000                | Peripherals               |          |                            | Reserved         |
|                        |                            |                           |          | 0x4003_C000                |                  |
|                        |                            | External Device           |          | 0x4003_B000                | RTC              |
|                        |                            | Area                      | <i>i</i> | 0x4003_A000                | Watch Counter    |
|                        |                            |                           |          | 0x4003_9000                | CRC              |
|                        |                            |                           |          | 0x4003_8000                | MFS              |
|                        | 0x6000_0000                |                           |          | 0x4003_6000                | Reserved         |
|                        |                            | Reserved                  |          | 0x4003_5000                | LVD/DS mode      |
|                        | 0x4400_0000                |                           |          | 0x4003_4000                | Reserved         |
|                        |                            | 32Mbyte                   | ] ;      | 0x4003_3000                | GPIO             |
|                        | 0x4200_0000                | Bit band alias            | _;       | 0x4003_2000                | Reserved         |
|                        |                            | Peripherals               |          | 0x4003_1000                | Int-Req. Read    |
|                        | 0x4000_0000                | 1 cripricials             | ļ -,     | 0x4003_0000                | EXTI             |
|                        |                            |                           | l i      | 0x4002_F000                | Reserved         |
|                        |                            | Reserved                  | ;        | 0x4002_E000                | CR Trim          |
|                        | 0x2400_0000                | 228 Mb. 4-                | 1        |                            | Reserved         |
|                        | 0x2200 0000                | 32Mbyte<br>Bit band alias | i        | 0x4002_8000                | A/DC             |
|                        | 0x200E_1000                | Reserved                  | 1 }      | 0x4002_7000<br>0x4002_6000 | QPRC             |
|                        | 0x200E_1000<br>0x200E_0000 | WorkFlash I/F             | 1        | 0x4002_5000<br>0x4002_5000 | Base Timer       |
|                        | 0x200C_0000                | WorkFlash                 | i        | 0x4002_4000                | PPG              |
|                        | 0x2008_0000                | Reserved                  | 1 \      |                            |                  |
|                        | 0x2000_0000                | SRAM1                     | 1        |                            | Reserved         |
| See the next page      | 0x1FFF_0000                | SRAM0                     | 1 ;      | 0x4002_1000                |                  |
| "  Memory Map (2)" for | 0.1111_0000                |                           | 1        | 0x4002_0000                | MFT unit0        |
| the memory size        | 0x0010_2000                | Reserved                  | 1        | 0×4004 6000                | Reserved         |
| details.               | 0x0010_0000                | Security/CR Trim          | ] \      | 0x4001_6000<br>0x4001_5000 | Dual Timer       |
|                        |                            |                           | 1        | 0,4001_3000                | Reserved         |
|                        |                            | Mai - El- al-             | i        | 0x4001_3000                |                  |
|                        |                            | MainFlash                 |          | 0x4001_2000                | SW WDT           |
|                        | 0x0000_0000                |                           | ] ;      | 0x4001_1000                | HW WDT           |
|                        |                            |                           | - I      | 0x4001_0000                | Clock/Reset      |
|                        |                            |                           | 1        | 0x4000_1000                | Reserved         |
|                        |                            |                           | i i      | - 0x4000_0000              | MainFlash I/F    |



Memory Map (2)

|             | MB9AF112K       |               | MB9AF111K            |
|-------------|-----------------|---------------|----------------------|
| 0x200E_0000 |                 | 0x200E_0000   |                      |
|             | Reserved        |               | Reserved             |
| 0x200C_8000 |                 | 0x200C_8000   |                      |
|             | WorkFlash       |               | WorkFlash            |
| 0x200C_0000 | 32Kbyte         | 0x200C_0000   | 32Kbyte              |
|             |                 |               |                      |
|             | Reserved        |               | Reserved             |
|             |                 |               |                      |
| 0x2000_2000 |                 | 0x2000_2000   |                      |
|             | SRAM1<br>8Kbyte |               | SRAM1<br>8Kbyte      |
| 0x2000_0000 |                 | 0x2000_0000   | •                    |
|             | SRAM0<br>8Kbyte |               | SRAM0<br>8Kbyte      |
| 0x1FFF_E000 |                 | 0x1FFF_E000   |                      |
|             |                 |               |                      |
|             | Reserved        |               | Reserved             |
|             |                 |               |                      |
| 0x0010_2000 |                 | 0x0010_2000   |                      |
| 0x0010_1000 | CR trimming     | 0x0010_1000 _ | CR trimming          |
| 0x0010_0000 | Security        | 0x0010_0000   | Security             |
|             |                 |               |                      |
|             |                 |               |                      |
|             |                 |               |                      |
|             | Reserved        |               | Reserved             |
|             |                 |               | Nesciveu             |
|             |                 |               |                      |
| 0x0002_0000 |                 |               |                      |
| 5.0002_0000 |                 |               |                      |
|             | MainFlash       | 0x0001_0000   |                      |
| 0x0000_0000 | 128Kbyte        | 0x0000_0000   | MainFlash<br>64Kbyte |
| 0x0000_0000 |                 | 0,0000_0000   | ·                    |



Peripheral Address Map

| <ul><li>Peripheral Add</li></ul> | ress Map    | T     |                                        |
|----------------------------------|-------------|-------|----------------------------------------|
| Start address                    | End address | Bus   | Peripherals                            |
| 0x4000_0000                      | 0x4000_0FFF | ALID  | MainFlash I/F register                 |
| 0x4000_1000                      | 0x4000_FFFF | AHB   | Reserved                               |
| 0x4001_0000                      | 0x4001_0FFF |       | Clock/Reset Control                    |
| 0x4001_1000                      | 0x4001_1FFF |       | Hardware Watchdog timer                |
| 0x4001_2000                      | 0x4001_2FFF | A DDO | Software Watchdog timer                |
| 0x4001_3000                      | 0x4001_4FFF | APB0  | Reserved                               |
| 0x4001_5000                      | 0x4001_5FFF |       | Dual-Timer                             |
| 0x4001_6000                      | 0x4001_FFFF |       | Reserved                               |
| 0x4002_0000                      | 0x4002_0FFF |       | Multi-function timer unit0             |
| 0x4002_1000                      | 0x4002_3FFF |       | Reserved                               |
| 0x4002_4000                      | 0x4002_4FFF |       | PPG                                    |
| 0x4002_5000                      | 0x4002_5FFF |       | Base Timer                             |
| 0x4002_6000                      | 0x4002_6FFF | APB1  | Quadrature Position/Revolution Counter |
| 0x4002_7000                      | 0x4002_7FFF |       | A/D Converter                          |
| 0x4002_8000                      | 0x4002_DFFF |       | Reserved                               |
| 0x4002_E000                      | 0x4002_EFFF |       | Internal CR trimming                   |
| 0x4002_F000                      | 0x4002_FFFF |       | Reserved                               |
| 0x4003_0000                      | 0x4003_0FFF |       | External Interrupt Controller          |
| 0x4003_1000                      | 0x4003_1FFF |       | Interrupt Request Batch-Read Function  |
| 0x4003_2000                      | 0x4003_2FFF |       | Reserved                               |
| 0x4003_3000                      | 0x4003_3FFF |       | GPIO                                   |
| 0x4003_4000                      | 0x4003_4FFF |       | Reserved                               |
| 0x4003_5000                      | 0x4003_57FF |       | Low Voltage Detector                   |
| 0x4003_5800                      | 0x4003_5FFF | APB2  | Deep stand-by mode Controller          |
| 0x4003_6000                      | 0x4003_7FFF |       | Reserved                               |
| 0x4003_8000                      | 0x4003_8FFF |       | Multi-function serial Interface        |
| 0x4003_9000                      | 0x4003_9FFF |       | CRC                                    |
| 0x4003_A000                      | 0x4003_AFFF |       | Watch Counter                          |
| 0x4003_B000                      | 0x4003_BFFF |       | Real-time clock                        |
| 0x4003_C000                      | 0x4003_FFFF |       | Reserved                               |
| 0x4004_0000                      | 0x4005_FFFF |       | Reserved                               |
| 0x4006_0000                      | 0x4006_0FFF | AIID  | DMAC register                          |
| 0x4006_1000                      | 0x41FF_FFFF | AHB   | Reserved                               |
| 0x200E_0000                      | 0x200E_FFFF |       | WorkFlash I/F register                 |



#### ■ PIN STATUS IN EACH CPU STATE

The terms used for pin status have the following meanings.

#### • INITX=0

This is the period when the INITX pin is the "L" level.

#### • INITX=1

This is the period when the INITX pin is the "H" level.

#### • SPL=0

This is the status that standby pin level setting bit (SPL) in standby mode control register (STB\_CTL) is set to "0".

#### •SPL=1

This is the status that standby pin level setting bit (SPL) in standby mode control register (STB\_CTL) is set to "1".

#### · Input enabled

Indicates that the input function can be used.

#### • Internal input fixed at "0"

This is the status that the input function cannot be used. Internal input is fixed at "L".

#### · Hi-Z

Indicates that the output drive transistor is disabled and the pin is put in the Hi-Z state.

#### Setting disabled

Indicates that the setting is disabled.

#### • Maintain previous state

Maintains the state that was immediately prior to entering the current mode. If a built-in peripheral function is operating, the output follows the peripheral function. If the pin is being used as a port, that output is maintained.

# · Analog input is enabled

Indicates that the analog input is enabled.

#### · GPIO selected

In Deep stand-by mode, pins switch to the general-purpose I/O port.



• List of Pin Status

|                 | List of Pin Sta                          | ius                                                                  | ı                                           | 1                                           | ı                             |                                                                                                                      |                                                                                                                      | 1                                                                                                                    |                                                                                                                      | 1                                                                                                        |
|-----------------|------------------------------------------|----------------------------------------------------------------------|---------------------------------------------|---------------------------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Pin status type | low-voltage detection state group        |                                                                      | Device<br>internal<br>reset state           | Run mode<br>or sleep<br>mode state          | RTC m                         | mode,<br>node, or<br>ode state                                                                                       | stand-by S                                                                                                           | nd-by RTC<br>or Deep<br>TOP mode<br>ate                                                                              | Return from<br>Deep<br>stand-by<br>mode state                                                                        |                                                                                                          |
| Pin             |                                          | Power supply unstable                                                | Power sup                                   | stable                                      |                               | supply stable stable                                                                                                 |                                                                                                                      | Power supply stable                                                                                                  |                                                                                                                      | Power supply stable                                                                                      |
|                 |                                          | -                                                                    | INITX = 0                                   | INITX = 1                                   | INITX = 1                     | SPL = 0                                                                                                              | X = 1<br>SPL = 1                                                                                                     | SPL = 0                                                                                                              | X = 1<br>SPL = 1                                                                                                     | INITX = 1                                                                                                |
| A               | GPIO<br>selected                         | Setting<br>disabled                                                  | Setting<br>disabled                         | Setting<br>disabled                         | Maintain<br>previous<br>state | Maintain<br>previous<br>state                                                                                        | Hi-Z /<br>Internal<br>input fixed<br>at "0"                                                                          | Maintain<br>previous<br>state                                                                                        | Hi-Z / Internal input fixed at "0"                                                                                   | Maintain<br>previous<br>state                                                                            |
|                 | Main crystal<br>oscillator input<br>pin  | Input<br>enabled                                                     | Input<br>enabled                            | Input<br>enabled                            | Input<br>enabled              | Input<br>enabled                                                                                                     | Input<br>enabled                                                                                                     | Input<br>enabled                                                                                                     | Input<br>enabled                                                                                                     | Input<br>enabled                                                                                         |
|                 | GPIO<br>selected                         | Setting<br>disabled                                                  | Setting<br>disabled                         | Setting<br>disabled                         | Maintain<br>previous<br>state | Maintain<br>previous<br>state                                                                                        | Hi-Z /<br>Internal<br>input fixed<br>at "0"                                                                          | Maintain<br>previous<br>state                                                                                        | Hi-Z /<br>Internal<br>input fixed<br>at "0"                                                                          | Maintain<br>previous<br>state                                                                            |
| В               | Main crystal<br>oscillator output<br>pin | Hi-Z/<br>Internal<br>input<br>fixed at<br>"0"/<br>or Input<br>enable | Hi-Z /<br>Internal<br>input fixed<br>at "0" | Hi-Z /<br>Internal<br>input fixed<br>at "0" | Maintain<br>previous<br>state | Maintain<br>previous<br>state /When<br>oscillation<br>stop* <sup>1</sup> ,Hi-Z/<br>Internal<br>input fixed<br>at "0" | Maintain<br>previous<br>state /When<br>oscillation<br>stop*1,Hi-Z//<br>Internal<br>input fixed<br>at "0" |
| С               | INITX<br>input pin                       | Pull-up /<br>Input<br>enabled                                        | Pull-up /<br>Input<br>enabled               | Pull-up /<br>Input<br>enabled               | Pull-up /<br>Input<br>enabled | Pull-up /<br>Input<br>enabled                                                                                        | Pull-up /<br>Input<br>enabled                                                                                        | Pull-up /<br>Input<br>enabled                                                                                        | Pull-up /<br>Input<br>enabled                                                                                        | Pull-up /<br>Input<br>enabled                                                                            |
| D               | Mode<br>input pin                        | Input<br>enabled                                                     | Input<br>enabled                            | Input<br>enabled                            | Input<br>enabled              | Input<br>enabled                                                                                                     | Input<br>enabled                                                                                                     | Input<br>enabled                                                                                                     | Input<br>enabled                                                                                                     | Input<br>enabled                                                                                         |
|                 | JTAG<br>selected                         | Hi-Z                                                                 | Pull-up /<br>Input<br>enabled               | Pull-up /<br>Input<br>enabled               | Maintain                      | Maintain                                                                                                             | Maintain<br>previous<br>state                                                                                        | Maintain<br>previous<br>state                                                                                        | Maintain<br>previous<br>state                                                                                        | Maintain<br>previous<br>state                                                                            |
| E               | GPIO<br>selected                         | Setting<br>disabled                                                  | Setting<br>disabled                         | Setting<br>disabled                         | previous<br>state             | previous<br>state                                                                                                    | Hi-Z /<br>Internal<br>input fixed<br>at "0"                                                                          | Maintain<br>previous<br>state                                                                                        | Hi-Z /<br>Internal<br>input fixed<br>at "0"                                                                          | Maintain<br>previous<br>state                                                                            |



| Pin status type | Function<br>group                                                      | Power-on<br>reset or<br>low-voltage<br>detection<br>state | INITX input<br>state                                      | Device<br>internal<br>reset state                                           | Run mode<br>or sleep<br>mode state                        | RTC m                                                                       | mode,<br>lode, or<br>lode state                                    | stand-by S                                                | or Deep                                                   | Return from<br>Deep<br>stand-by<br>mode state                            |
|-----------------|------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------|
| Pin             |                                                                        | Power supply unstable                                     | Power sup                                                 |                                                                             | Power supply stable                                       |                                                                             | oply stable                                                        | '                                                         | oply stable                                               | Power supply stable                                                      |
|                 |                                                                        |                                                           | INITX = 0                                                 | INITX = 1                                                                   | INITX = 1                                                 | SPL = 0                                                                     | X = 1<br>SPL = 1                                                   | INIT:                                                     | X = 1<br>SPL = 1                                          | INITX = 1                                                                |
|                 | WKUP<br>enabled                                                        | Setting<br>disabled                                       | Setting<br>disabled                                       | Setting<br>disabled                                                         | Maintain<br>previous<br>state                             | Maintain<br>previous<br>state                                               | Maintain<br>previous<br>state                                      | WKUP<br>input<br>enabled                                  | Hi-Z /<br>WKUP<br>input<br>enabled                        | GPIO<br>selected                                                         |
| F               | Analog input<br>selected                                               | Hi-Z                                                      | Hi-Z / Internal input fixed at "0" / Analog input enabled | Hi-Z /<br>Internal<br>input fixed<br>at "0" /<br>Analog<br>input<br>enabled | Hi-Z / Internal input fixed at "0" / Analog input enabled | Hi-Z /<br>Internal<br>input fixed<br>at "0" /<br>Analog<br>input<br>enabled | Hi-Z / Internal input fixed at "0" / Analog input enabled          | Hi-Z / Internal input fixed at "0" / Analog input enabled | Hi-Z / Internal input fixed at "0" / Analog input enabled | Hi-Z /<br>Internal<br>input fixed<br>at "0" /<br>Analog input<br>enabled |
|                 | External interrupt enabled selected Resource other than above selected | Setting<br>disabled                                       | Setting<br>disabled                                       | Setting<br>disabled                                                         | Maintain<br>previous<br>state                             | Maintain<br>previous<br>state                                               | Maintain<br>previous<br>state<br>Hi-Z /<br>Internal<br>input fixed | GPIO<br>selected                                          | Hi-Z /<br>Internal<br>input fixed<br>at "0"               | GPIO<br>selected<br>Maintain                                             |
|                 | GPIO<br>selected                                                       |                                                           |                                                           |                                                                             |                                                           |                                                                             | at "0"                                                             | previous<br>state                                         |                                                           | previous<br>state                                                        |
|                 | WKUP<br>enabled                                                        | Setting<br>disabled                                       | Setting<br>disabled                                       | Setting<br>disabled                                                         | Maintain<br>previous<br>state                             | Maintain<br>previous<br>state                                               | Maintain<br>previous<br>state                                      | WKUP<br>input<br>enabled                                  | Hi-Z / WKUP input enabled                                 | GPIO<br>selected                                                         |
| G               | External interrupt enabled selected                                    | Setting<br>disabled                                       | Setting<br>disabled                                       | Setting<br>disabled                                                         |                                                           |                                                                             | Maintain<br>previous<br>state                                      | GPIO                                                      | Hi-Z/                                                     | GPIO                                                                     |
|                 | Resource other<br>than above<br>selected                               | Hi-Z                                                      | Hi-Z /<br>Input                                           | Hi-Z /<br>Input                                                             | Maintain<br>previous<br>state                             | Maintain<br>previous<br>state                                               | Hi-Z /<br>Internal                                                 | selected                                                  | Internal input fixed at "0"                               | selected                                                                 |
|                 | GPIO<br>selected                                                       |                                                           | enabled                                                   | enabled                                                                     |                                                           |                                                                             | at "0"                                                             | Maintain<br>previous<br>state                             |                                                           | Maintain<br>previous<br>state                                            |
|                 | External interrupt enabled selected Resource other                     | Setting<br>disabled                                       | Setting<br>disabled                                       | Setting<br>disabled                                                         | Maintain                                                  | Maintain                                                                    | Maintain previous state                                            | GPIO<br>selected                                          | Hi-Z/                                                     | GPIO selected                                                            |
| Н               | than above selected                                                    | Hi-Z                                                      | Hi-Z /<br>Input                                           | Hi-Z /<br>Input                                                             | previous<br>state                                         | previous<br>state                                                           | Hi-Z / Internal input fixed                                        | Maintain                                                  | Internal<br>input fixed<br>at "0"                         | Maintain                                                                 |
|                 | GPIO<br>selected                                                       |                                                           | enabled                                                   | enabled                                                                     |                                                           |                                                                             | at "0"                                                             | previous<br>state                                         |                                                           | previous<br>state                                                        |
| I               | resource<br>selected<br>GPIO                                           | Hi-Z                                                      | Hi-Z / Input enabled                                      | Hi-Z /<br>Input<br>enabled                                                  | Maintain previous state                                   | Maintain<br>previous<br>state                                               | Hi-Z /<br>Internal<br>input fixed                                  | GPIO<br>selected<br>Maintain<br>previous                  | Hi-Z /<br>Internal<br>input fixed                         | GPIO<br>selected<br>Maintain<br>previous                                 |
|                 | selected                                                               |                                                           |                                                           |                                                                             | 5440                                                      | 5                                                                           | at "0"                                                             | state                                                     | at "0"                                                    | state                                                                    |



| Pin status type | Function<br>group                                                      | Power-on<br>reset or<br>low-voltage<br>detection<br>state | INITX input<br>state                                                        | Device<br>internal<br>reset state                                           | Run mode<br>or sleep<br>mode state                                          | Timer<br>RTC m<br>sleep mo                                                  |                                                                             | Deep star<br>mode o<br>stand-by S<br>sta                                    | or Deep<br>TOP mode                                                         | Return from<br>Deep<br>stand-by<br>mode state             |
|-----------------|------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------|
| Pin             |                                                                        | Power supply unstable                                     | Power sup                                                                   |                                                                             | Power supply stable                                                         | Power sup                                                                   | . ,                                                                         | Power sup                                                                   |                                                                             | Power<br>supply<br>stable                                 |
|                 |                                                                        | -                                                         | INITX = 0                                                                   | INITX = 1                                                                   | INITX = 1                                                                   | SPL = 0                                                                     | X = 1<br>SPL = 1                                                            | SPL = 0                                                                     | X = 1<br>SPL = 1                                                            | INITX = 1                                                 |
|                 | NMIX<br>selected                                                       | Setting<br>disabled                                       | Setting<br>disabled                                                         | Setting<br>disabled                                                         | Maintain                                                                    | Maintain                                                                    | Maintain<br>previous<br>state                                               | WKUP                                                                        | Hi-Z/                                                                       | GPIO<br>selected                                          |
| J               | than above selected                                                    | Hi-Z                                                      | Hi-Z /<br>Input<br>enabled                                                  | Hi-Z /<br>Input<br>enabled                                                  | previous<br>state                                                           | previous<br>state                                                           | Hi-Z /<br>Internal<br>input fixed                                           | input<br>enabled                                                            | WKUP<br>input<br>enabled                                                    | Maintain                                                  |
|                 | selected                                                               |                                                           |                                                                             |                                                                             |                                                                             |                                                                             | at "0"                                                                      |                                                                             |                                                                             | previous<br>state                                         |
| K               | Analog input selected                                                  | Hi-Z                                                      | Hi-Z / Internal input fixed at "0" / Analog input enabled                   | Hi-Z /<br>Internal<br>input fixed<br>at "0" /<br>Analog<br>input<br>enabled | Hi-Z / Internal input fixed at "0" / Analog input enabled |
|                 | Resource other than above selected  GPIO selected                      | Setting<br>disabled                                       | Setting<br>disabled                                                         | Setting<br>disabled                                                         | Maintain<br>previous<br>state                                               | Maintain<br>previous<br>state                                               | Hi-Z /<br>Internal<br>input fixed<br>at "0"                                 | GPIO<br>selected<br>Maintain<br>previous<br>state                           | Hi-Z /<br>Internal<br>input fixed<br>at "0"                                 | GPIO<br>selected<br>Maintain<br>previous<br>state         |
|                 | Analog input selected                                                  | Hi-Z                                                      | Hi-Z /<br>Internal<br>input fixed<br>at "0" /<br>Analog<br>input<br>enabled | Hi-Z / Internal input fixed at "0" / Analog input enabled                   | Hi-Z /<br>Internal<br>input fixed<br>at "0" /<br>Analog<br>input<br>enabled | Hi-Z / Internal input fixed at "0" / Analog input enabled |
| L               | External interrupt enabled selected Resource other than above selected | Setting<br>disabled                                       | Setting<br>disabled                                                         | Setting<br>disabled                                                         | Maintain<br>previous<br>state                                               | Maintain<br>previous<br>state                                               | Maintain<br>previous<br>state<br>Hi-Z /<br>Internal<br>input fixed          | GPIO<br>selected                                                            | Hi-Z /<br>Internal<br>input fixed<br>at "0"                                 | GPIO<br>selected<br>Maintain                              |
|                 | GPIO<br>selected                                                       |                                                           |                                                                             |                                                                             |                                                                             |                                                                             | at "0"                                                                      | previous                                                                    |                                                                             | previous                                                  |
|                 | GPIO<br>selected                                                       | Setting<br>disabled                                       | Setting<br>disabled                                                         | Setting<br>disabled                                                         | Maintain<br>previous<br>state                                               | Maintain<br>previous<br>state                                               | Hi-Z /<br>Internal<br>input fixed<br>at "0"                                 | Maintain<br>previous<br>state                                               | Hi-Z /<br>Internal<br>input fixed<br>at "0"                                 | Maintain<br>previous<br>state                             |
| M               | Sub crystal<br>oscillator input<br>pin                                 | Input<br>enabled                                          | Input<br>enabled                                                            | Input<br>enabled                                                            | Input<br>enabled                                                            | Input<br>enabled                                                            | Input<br>enabled                                                            | Input<br>enabled                                                            | Input<br>enabled                                                            | Input<br>enabled                                          |



| status type | Function group                          |                                                                      | INITX input<br>state                        | Device<br>internal<br>reset state           | Run mode<br>or sleep<br>mode state | RTC mode, or                                                                                            |                                                                                                         | mode of stand-by S            | Deep stand-by RTC<br>mode or Deep<br>stand-by STOP mode<br>state                                        |                                                                                                         |
|-------------|-----------------------------------------|----------------------------------------------------------------------|---------------------------------------------|---------------------------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Pir         |                                         | Power supply unstable                                                | Power sup                                   | Power supply stable                         |                                    |                                                                                                         | Power supply stable                                                                                     |                               | oply stable                                                                                             | Power<br>supply<br>stable                                                                               |
|             |                                         | -                                                                    | INITX = 0                                   | INITX = 1                                   | INITX = 1                          |                                                                                                         | X = 1                                                                                                   | INIT                          |                                                                                                         | INITX = 1                                                                                               |
|             |                                         | -                                                                    | -                                           | -                                           | -                                  | SPL = 0                                                                                                 | SPL = 1                                                                                                 | SPL = 0                       | SPL = 1                                                                                                 | -                                                                                                       |
|             | GPIO<br>selected                        | Setting<br>disabled                                                  | Setting<br>disabled                         | Setting<br>disabled                         | Maintain<br>previous<br>state      | Maintain<br>previous<br>state                                                                           | Hi-Z / Internal input fixed at "0"                                                                      | Maintain<br>previous<br>state | Hi-Z / Internal input fixed at "0"                                                                      | Maintain<br>previous<br>state                                                                           |
| N           | Sub crystal<br>oscillator output<br>pin | Hi-Z/<br>Internal<br>input<br>fixed at<br>"0"/<br>or Input<br>enable | Hi-Z /<br>Internal<br>input fixed<br>at "0" | Hi-Z /<br>Internal<br>input fixed<br>at "0" | Maintain<br>previous<br>state      | Maintain<br>previous<br>state /When<br>oscillation<br>stop*²,Hi-Z/<br>Internal<br>input fixed<br>at "0" | Maintain<br>previous<br>state /When<br>oscillation<br>stop*²,Hi-Z/<br>Internal<br>input fixed<br>at "0" | oscillation                   | Maintain<br>previous<br>state /When<br>oscillation<br>stop*²,Hi-Z/<br>Internal<br>input fixed<br>at "0" | Maintain<br>previous<br>state /When<br>oscillation<br>stop*²,Hi-Z/<br>Internal<br>input fixed<br>at "0" |
| О           | GPIO<br>selected                        | Hi-Z                                                                 | Hi-Z /<br>Input<br>enabled                  | Hi-Z /<br>Input<br>enabled                  | Maintain<br>previous<br>state      | Maintain<br>previous<br>state                                                                           | Hi-Z /<br>Internal<br>input fixed<br>at "0"                                                             | Maintain<br>previous<br>state | Hi-Z /<br>Internal<br>input fixed<br>at "0"                                                             | Maintain<br>previous<br>state                                                                           |
|             | Mode input pin                          | Input<br>enabled                                                     | Input<br>enabled                            | Input<br>enabled                            | Input<br>enabled                   | Input<br>enabled                                                                                        | Input<br>enabled                                                                                        | Input<br>enabled              | Input<br>enabled                                                                                        | Input<br>enabled                                                                                        |
| P           | GPIO<br>selected                        | Setting<br>disabled                                                  | Setting<br>disabled                         | Setting<br>disabled                         | Maintain<br>previous<br>state      | Maintain previous state                                                                                 | Hi-Z / Input enabled                                                                                    | Maintain<br>previous<br>state | Hi-Z / Input enabled                                                                                    | Maintain<br>previous<br>state                                                                           |

<sup>\*1 :</sup> Oscillation is stopped at Sub timer mode, Low-speed CR timer mode, RTC mode, STOP mode, Deep stand-by RTC mode, and Deep stand-by STOP mode.

<sup>\*2 :</sup> Oscillation is stopped at STOP mode and Deep stand-by STOP mode.



#### **■ ELECTRICAL CHARACTERISTICS**

#### 1. Absolute Maximum Ratings

| Deremeter                                 | Cymbol            | F         | Rating                | Unit | Domorko     |
|-------------------------------------------|-------------------|-----------|-----------------------|------|-------------|
| Parameter                                 | Symbol            | Min       | Max                   | Unit | Remarks     |
| Power supply voltage *1, *2               | Vcc               | Vss - 0.5 | Vss + 6.5             | V    |             |
| Analog power supply voltage *1, *3        | AVcc              | Vss - 0.5 | Vss + 6.5             | V    |             |
| Analog reference voltage *1, *3           | AVRH              | Vss - 0.5 | Vss + 6.5             | V    |             |
| Input voltage                             | $V_{\rm I}$       | Vss - 0.5 | Vcc + 0.5<br>(≤6.5V)  | V    |             |
|                                           |                   | Vss - 0.5 | Vss + 6.5             | V    | 5V tolerant |
| Analog pin input voltage                  | $V_{IA}$          | Vss - 0.5 | AVcc + 0.5<br>(≤6.5V) | V    |             |
| Output voltage                            | Vo                | Vss - 0.5 | Vcc + 0.5<br>(≤6.5V)  | V    |             |
| "L" level maximum output current *4       | $I_{OL}$          |           | 10                    | mA   | 4mA type    |
| L level maximum output current            | IOL               | <u>-</u>  | 20                    | mA   | 12mA type   |
| "L" level average output current *5       | T                 |           | 4                     | mA   | 4mA type    |
| L level average output current            | I <sub>OLAV</sub> |           | 12                    | mA   | 12mA type   |
| "L" level total maximum output current    | $\sum I_{OL}$     |           | 100                   | mA   |             |
| "L" level total average output current *6 | $\sum I_{OLAV}$   | -         | 50                    | mA   |             |
| "H" level maximum output current *4       | $I_{OH}$          |           | - 10                  | mA   | 4mA type    |
| 11 level maximum output current           | TOH               |           | - 20                  | mA   | 12mA type   |
| "H" level average output current *5       | T                 |           | - 4                   | mA   | 4mA type    |
| H level average output current "          | $I_{OHAV}$        | -         | - 12                  | mA   | 12mA type   |
| "H" level total maximum output current    | $\sum I_{OH}$     | -         | - 100                 | mA   |             |
| "H" level total average output current *6 | $\sum I_{OHAV}$   | -         | - 50                  | mA   |             |
| Power consumption                         | $P_{D}$           | -         | 300                   | mW   |             |
| Storage temperature                       | $T_{STG}$         | - 55      | + 150                 | °C   |             |

<sup>\*1 :</sup> These parameters are based on the condition that  $V_{SS} = AV_{SS} = 0.0V$ .

#### <WARNING>

Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

<sup>\*2</sup>: Vcc must not drop below  $V_{SS}$  - 0.5V.

<sup>\*3</sup>: Ensure that the voltage does not to exceed Vcc + 0.5 V, for example, when the power is turned on.

<sup>\*4:</sup> The maximum output current is the peak value for a single pin.

<sup>\*5:</sup> The average output is the average current for a single pin over a period of 100 ms.

<sup>\*6:</sup> The total average output current is the average current for all pins over a period of 100 ms.



# 2. Recommended Operating Conditions

(Vss = AVss = 0.0V)

| Doromotor                   | Symbol   | Conditions | V    | alue  | Unit | Remarks  |
|-----------------------------|----------|------------|------|-------|------|----------|
| Parameter                   | Syllibol | Conditions | Min  | Max   | o ii | Nemaiks  |
| Power supply voltage        | Vcc      | -          | 2.7  | 5.5   | V    |          |
| Analog power supply voltage | AVcc     | -          | 2.7  | 5.5   | V    | AVcc=Vcc |
| Analog reference voltage    | AVRH     | =          | AVss | AVcc  | V    |          |
| Operating temperature       | Ta       | -          | - 40 | + 105 | °C   |          |

#### <WARNING>

The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.



# 3. DC Characteristics

# (1) Current Rating

 $(Vcc = AVcc = 2.7V \text{ to } 5.5V, Vss = AVss = 0V, Ta = -40^{\circ}C \text{ to } + 105^{\circ}C)$ 

| D                    | 0                | Pin  | •                                              | 2.7 7 10 | Value                                           | 55 1111 |      | , 1a = - 40 C to + 103 C)                                                                       |    |                                                                                        |
|----------------------|------------------|------|------------------------------------------------|----------|-------------------------------------------------|---------|------|-------------------------------------------------------------------------------------------------|----|----------------------------------------------------------------------------------------|
| Parameter            | Symbol           | name | Conditions                                     | Min      | Тур                                             | Max     | Unit | Remarks                                                                                         |    |                                                                                        |
|                      |                  |      | Normal operation                               | -        | 32                                              | 41      | mA   | CPU: 40MHz,<br>Peripheral: 40MHz,<br>MainFlash 0Wait<br>FRWTR.RWT = 00<br>FSYNDN.SD = 000       |    |                                                                                        |
|                      |                  |      | (PLL)                                          | -        | 21                                              | 28      | mA   | CPU: 40MHz,<br>Peripheral: 40MHz,<br>MainFlash 3Wait<br>FRWTR.RWT = 00<br>FSYNDN.SD = 011<br>*1 |    |                                                                                        |
|                      | Icc              | VCC  |                                                |          | Normal operation<br>(high-speed<br>internal CR) | ı       | 3.9  | 7.7                                                                                             | mA | CPU/Peripheral: 4MHz<br>*1, *2<br>MainFlash 0Wait<br>FRWTR.RWT = 00<br>FSYNDN.SD = 000 |
|                      |                  |      |                                                |          | Normal operation (sub oscillation)              | ı       | 0.15 | 3.2                                                                                             | mA | CPU/Peripheral : 32kHz<br>MainFlash 0Wait<br>FRWTR.RWT = 00<br>FSYNDN.SD = 000<br>*1   |
| Power supply current |                  |      | Normal operation<br>(low-speed<br>internal CR) | -        | 0.2                                             | 3.3     | mA   | CPU/Peripheral: 100kHz MainFlash 0Wait FRWTR.RWT = 00 FSYNDN.SD = 000 *1                        |    |                                                                                        |
|                      |                  |      | SLEEP operation (PLL)                          | -        | 10                                              | 15      | mA   | Peripheral : 40MHz<br>*1                                                                        |    |                                                                                        |
|                      | Iccs             |      | SLEEP operation<br>(high-speed<br>internal CR) | -        | 1.2                                             | 4.4     | mA   | Peripheral : 4MHz<br>*1, *2                                                                     |    |                                                                                        |
|                      | ices             |      | SLEEP operation (sub oscillation)              | -        | 0.1                                             | 3.1     | mA   | Peripheral : 32kHz<br>*1                                                                        |    |                                                                                        |
|                      |                  |      | SLEEP operation<br>(low-speed<br>internal CR)  | -        | 0.1                                             | 3.1     | mA   | Peripheral: 100kHz<br>*1                                                                        |    |                                                                                        |
|                      |                  |      | grap i                                         | -        | 35                                              | 200     | μΑ   | Ta = $+25$ °C,<br>When LVD is off<br>*1                                                         |    |                                                                                        |
|                      | І <sub>ссн</sub> |      | STOP mode                                      | -        | -                                               | 3       | mA   | Ta = + 105°C,<br>When LVD is off<br>*1                                                          |    |                                                                                        |
|                      | Loor             |      | TIMER mode                                     | -        | 60                                              | 230     | μА   | Ta = + 25°C,<br>When LVD is off<br>*1                                                           |    |                                                                                        |
|                      | $I_{CCT}$        |      | (sub oscillation)                              | -        | -                                               | 3.1     | mA   | Ta = + 105°C,<br>When LVD is off<br>*1                                                          |    |                                                                                        |



| Parameter                                                            | rameter Symbol Pin Conditions |      | Conditions               |           | Value     |           | Unit | Remarks                                                        |     |    |
|----------------------------------------------------------------------|-------------------------------|------|--------------------------|-----------|-----------|-----------|------|----------------------------------------------------------------|-----|----|
| Parameter                                                            | Symbol                        | name | Conditions               | Min       | Тур       | Max       | Unit |                                                                |     |    |
|                                                                      | T                             |      | DTC made                 | -         | 50        | 210       | μΑ   | Ta = +25°C,<br>When LVD is off<br>*1, *3                       |     |    |
|                                                                      | $I_{CCR}$                     |      | RTC mode                 | -         | 1         | 3.1       | μΑ   | Ta = +105°C,<br>When LVD is off<br>*1, *3                      |     |    |
|                                                                      |                               |      |                          |           | 20        | 150       | μΑ   | Ta = + 25°C,<br>When LVD is off<br>RAM hold off<br>*1, *4      |     |    |
| Power                                                                | $ m I_{CCHD}$                 |      | Deep stand-by            | -         | 23        | 150       | μΑ   | Ta = +25°C,<br>When LVD is off<br>RAM hold on<br>*1, *4        |     |    |
|                                                                      |                               | VCC  | STOP mode  Deep stand-by | STOP mode | STOP mode | STOP mode |      | -                                                              | 600 | μΑ |
| supply<br>current                                                    |                               |      |                          |           | -         | 610       | μΑ   | Ta = + 105°C,<br>When LVD is off<br>RAM hold on<br>*1, *4      |     |    |
|                                                                      |                               |      |                          |           | 30        | 160       | μΑ   | Ta = + 25°C,<br>When LVD is off<br>RAM hold off<br>*1, *3, *4  |     |    |
|                                                                      | Ţ                             |      |                          | -         | 33        | 160       | μΑ   | Ta = +25°C,<br>When LVD is off<br>RAM hold on<br>*1, *3, *4    |     |    |
|                                                                      | $I_{CCRD}$                    |      | RTC mode                 |           | -         | 600       | μΑ   | Ta = + 105°C,<br>When LVD is off<br>RAM hold off<br>*1, *3, *4 |     |    |
|                                                                      |                               |      |                          | -         | -         | 610       | μΑ   | Ta = + 105°C,<br>When LVD is off<br>RAM hold on<br>*1, *3, *4  |     |    |
| Low-voltage<br>detection<br>circuit (LVD)<br>power supply<br>current | $I_{CCLVD}$                   |      | At operation             | -         | 4         | 7         | μΑ   | For occurrence of interrupt                                    |     |    |

<sup>\*1:</sup> When all ports are fixed.

<sup>\*2:</sup> When setting it to 4MHz by trimming.

<sup>\*3:</sup> When using sub crystal oscillator.
\*4: RAM hold setting is on-chip SRAM only.



# (2) Pin Characteristics

 $(Vcc = AVcc = 2.7V \text{ to } 5.5V, Vss = AVss = 0V, Ta = -40^{\circ}C \text{ to } + 105^{\circ}C)$ 

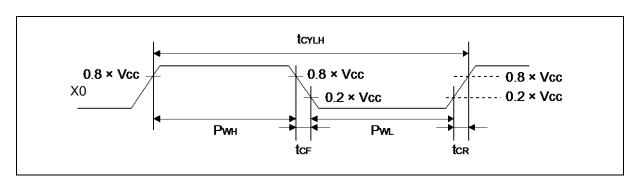
| Parameter                   | Symbol            | Pin name                                     | Conditions                                                                                                                                                  | 3.3 1, 1 35 | Valu | е         |       | Remarks |
|-----------------------------|-------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------|-----------|-------|---------|
| i alametei                  | Symbol            | 1 III Hairie                                 | Conditions                                                                                                                                                  | Min         | Тур  | Max       | Offic | remarks |
| "H" level input voltage     | $V_{IHS}$         | CMOS<br>hysteresis<br>input pin,<br>MD0, MD1 | -                                                                                                                                                           | Vcc × 0.8   | -    | Vcc + 0.3 | V     |         |
| (hysteresis input)          |                   | 5V tolerant input pin                        | -                                                                                                                                                           | Vcc × 0.8   | -    | Vss + 5.5 | V     |         |
| "L" level input voltage     | $V_{ILS}$         | CMOS<br>hysteresis<br>input pin,<br>MD0, MD1 | -                                                                                                                                                           | Vss - 0.3   | -    | Vcc × 0.2 | V     |         |
| (hysteresis input)          |                   | 5V tolerant input pin                        | -                                                                                                                                                           | Vss - 0.3   | -    | Vcc × 0.2 | V     |         |
|                             |                   | 4mA<br>type                                  | $Vcc \ge 4.5 \text{ V}$ $I_{OH} = -4mA$ $Vcc < 4.5 \text{ V}$ $I_{OH} = -2mA$                                                                               | Vcc - 0.5   | -    | Vcc       | V     |         |
| "H" level<br>output voltage | $V_{\mathrm{OH}}$ | 12mA<br>type                                 | $Vcc \ge 4.5 \text{ V}$ $I_{OH} = -12\text{mA}$ $Vcc < 4.5 \text{ V}$ $I_{OH} = -8\text{mA}$                                                                | Vcc - 0.5   | -    | Vcc       | V     |         |
|                             |                   | P80/P81                                      | $\begin{aligned} &Vcc \geq 4.5 \text{ V} \\ &I_{OH} = \text{-} 20.5 \text{ mA} \\ &Vcc < 4.5 \text{ V} \\ &I_{OH} = \text{-} 13.0 \text{ mA} \end{aligned}$ | Vcc - 0.4   | -    | Vcc       | V     |         |



|                                 | Pin            | 0 11:11                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Value                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------|----------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Symbol                          | name           | Conditions                                                                                   | Min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Init   Re                                                  | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                 |                | $Vcc \ge 4.5 \text{ V}$                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                 | 4mA type       |                                                                                              | Vss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                          | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                 | 71             |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                 |                |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                 |                |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Vor                             | 12m A type     | $I_{OL} = 12mA$                                                                              | Vec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _                                                          | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| , OL                            | 12mA type      | Vcc < 4.5 V                                                                                  | V 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _                                                          | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>'</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                 |                | $I_{OL} = 8mA$                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                 | P80/P81        | $Vcc \ge 4.5 \text{ V}$                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                 |                | $I_{OL} = 18.5 \text{mA}$                                                                    | Vec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                            | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                 |                | Vcc< 4.5 V                                                                                   | VSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                          | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                 |                | $I_{OL} = 10.5 \text{mA}$                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $I_{\Pi\!L}$                    | -              | -                                                                                            | - 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                          | +5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | μΑ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                 |                | $Vcc \ge 4.5 \text{ V}$                                                                      | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50                                                         | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ull-up sistance R <sub>PU</sub> |                | Vcc < 4.5 V                                                                                  | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 80                                                         | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | kΩ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                 | Other than VCC |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                 |                |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $C_{IN}$                        |                | =                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5                                                          | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | pF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                 | ·              |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                 |                |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                 |                | Vol. 12mA type  P80/P81  I <sub>IL</sub> -  R <sub>PU</sub> Pull-up pin  Other than VCC, VSS | $V_{OL} = \begin{cases} A_{mA} \text{ type} & Conditions \\ V_{CC} \ge 4.5 \text{ V} \\ I_{OL} = 4mA \\ V_{CC} < 4.5 \text{ V} \\ I_{OL} = 2mA \\ V_{CC} \ge 4.5 \text{ V} \\ I_{OL} = 12mA \\ V_{CC} < 4.5 \text{ V} \\ I_{OL} = 12mA \\ V_{CC} < 4.5 \text{ V} \\ I_{OL} = 8mA \\ V_{CC} \ge 4.5 \text{ V} \\ I_{OL} = 18.5mA \\ V_{CC} < 4.5 \text{ V} \\ I_{OL} = 10.5mA \\ V_{CC} < 4.5 \text{ V} \\ I_{OL} = 10.5mA \\ V_{CC} < 4.5 \text{ V} \\ V_{CC} < 4.5 \text{ V} \\ I_{OL} = 10.5mA \\ V_{CC} < 4.5 \text{ V} \\ V_{CC$ | $V_{OL} = \begin{cases}                                  $ | $ V_{OL} = $ | $ V_{OL} = $ | $V_{OL} = \begin{cases} V_{OL} = V_{OL} & V_{OL} = V_{OL} =$ |



# 4. AC Characteristics

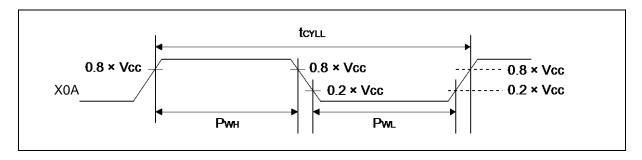

# (1) Main Clock Input Characteristics

 $(Vcc = 2.7V \text{ to } 5.5V, Vss = 0V, Ta = -40^{\circ}C \text{ to } +105^{\circ}C)$ 

| Doromotor                                         | Symbol            | Pin  | Conditions     | Va                                           | lue     | Lloit | Domorko                      |
|---------------------------------------------------|-------------------|------|----------------|----------------------------------------------|---------|-------|------------------------------|
| Parameter                                         | Symbol            | name | Conditions     | Min   Max     When crystal osci is connected | Remarks |       |                              |
|                                                   |                   |      | $Vcc \ge 4.5V$ | 4                                            | 48      | МЦа   | When crystal oscillator      |
| Input frequency                                   | $F_{CH}$          |      | Vcc < 4.5V     | 4                                            | 20      | MITIZ | is connected                 |
| input frequency                                   | 1 CH              |      | $Vcc \ge 4.5V$ | 4                                            | 48      | МИз   | When using external          |
|                                                   |                   |      | Vcc < 4.5V     | 4                                            | 20      | WILIZ | clock                        |
| Input clock cycle                                 | t                 | X0   | $Vcc \ge 4.5V$ | 20.83                                        | 1       |       | When using external          |
| input clock cycle                                 | t <sub>CYLH</sub> | X1   | Vcc < 4.5V     | 50                                           | 250     | 115   | clock                        |
| Input clock pulse                                 | _                 |      | Pwh/tcylh      | 45 55                                        |         | 0/2   | When using external          |
| width                                             | _                 |      | Pwl/tcylh      | 73                                           | 33      | 70    |                              |
| Input clock rise                                  | $t_{CF,}$         |      | _              | _                                            | 5       | ne    | When using external          |
| time and fall time                                | $t_{CR}$          |      |                |                                              |         | 113   | clock                        |
|                                                   | $F_{CC}$          | _    | _              | _                                            | 42      | MHz   |                              |
| Internal operating                                |                   |      |                |                                              | 12      |       |                              |
| clock frequency*1                                 | $F_{CP0}$         | -    | -              | -                                            | 42      | MHz   |                              |
| clock frequency                                   | $F_{CP1}$         | -    | -              | -                                            | 42      | MHz   | APB1 bus clock* <sup>2</sup> |
|                                                   | $F_{CP2}$         | -    | -              | -                                            | 42      | MHz   | APB2 bus clock* <sup>2</sup> |
|                                                   | +                 |      |                | 22.0                                         |         | ne    | Base clock                   |
| T., 4                                             | $t_{CYCC}$        | ı    | -              | 23.8                                         | -       | IIS   | (HCLK/FCLK)                  |
| Internal operating clock cycle time* <sup>1</sup> | $t_{CYCP0}$       | -    | -              | 23.8                                         | -       | ns    | APB0 bus clock*2             |
| clock cycle time*                                 | $t_{CYCP1}$       | -    | -              | 23.8                                         | -       | ns    | APB1 bus clock*2             |
|                                                   | $t_{CYCP2}$       | -    | -              | 23.8                                         | -       | ns    | APB2 bus clock*2             |

<sup>\*1:</sup> For more information about each internal operating clock, see "Chapter: Clock" in "FM3 Family PERIPHERAL MANUAL".

<sup>\*2:</sup> For about each APB bus which each peripheral is connected to, see "■ BLOCK DIAGRAM" in this data sheet.






# (2) Sub Clock Input Characteristics

 $(Vcc = 2.7V \text{ to } 5.5V, Vss = 0V, Ta = -40^{\circ}C \text{ to } +105^{\circ}C)$ 

|                         |                     |      |                        |     |        | /     |       |                                      |
|-------------------------|---------------------|------|------------------------|-----|--------|-------|-------|--------------------------------------|
| Parameter               | Symbol              | Pin  | Conditions             |     | Value  | •     | Unit  | Remarks                              |
| raiailletei             | Syllibol            | name | Conditions             | Min | Тур    | Max   | Offic | Remarks                              |
| Input frequency         | 1/t <sub>CYLL</sub> |      | -                      | 1   | 32.768 | 1     | kHz   | When crystal oscillator is connected |
|                         |                     | X0A  | -                      | 32  | -      | 100   | kHz   | When using external clock            |
| Input clock cycle       | t <sub>CYLL</sub>   | X1A  | -                      | 10  | -      | 31.25 | μs    | When using external clock            |
| Input clock pulse width | -                   |      | Pwh/tcyll<br>Pwl/tcyll | 45  | -      | 55    | %     | When using external clock            |



# (3) Internal CR Oscillation Characteristics

• High-speed Internal CR

 $(Vcc = 2.7V \text{ to } 5.5V, Vss = 0V, Ta = -40^{\circ}C \text{ to } +105^{\circ}C)$ 

| Parameter                       | Symbol   | Conditions                                                                                                                        |     | Value |                | Unit   | Remarks           |  |
|---------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------|-----|-------|----------------|--------|-------------------|--|
| Farameter                       | Syllibol | Conditions                                                                                                                        | Min | Тур   | Max            | Offic  | Remarks           |  |
| Clock frequency F <sub>CR</sub> |          | $Ta = +25^{\circ}C \qquad 3.96 \qquad 4 \qquad 4.04$ $Ta =  0^{\circ}C \text{ to } +70^{\circ}C \qquad 3.84 \qquad 4 \qquad 4.16$ |     | 4     | 4.04           |        |                   |  |
|                                 | Fany     |                                                                                                                                   |     | MHz   | When trimming* |        |                   |  |
|                                 | 1 CRH    | $Ta = -40^{\circ}C \text{ to} + 85^{\circ}C$                                                                                      | 3.8 | 4     | 4.2            | IVIIIZ |                   |  |
|                                 |          | $Ta = -40^{\circ}C \text{ to } + 85^{\circ}C$                                                                                     | 3   | 3 4   |                |        | When not trimming |  |

<sup>\*:</sup> In the case of using the values in CR trimming area of Flash memory at shipment for frequency trimming.

# · Low-speed Internal CR

 $(Vcc = 2.7V \text{ to } 5.5V, Vss = 0V, Ta = -40^{\circ}C \text{ to } + 105^{\circ}C)$ 

| Parameter       | Symbol Conditions |            |     | Value |     | Unit | Domorko |  |
|-----------------|-------------------|------------|-----|-------|-----|------|---------|--|
|                 | Symbol            | Conditions | Min | Тур   | Max | Unit | Remarks |  |
| Clock frequency | F <sub>CRL</sub>  | -          | 50  | 100   | 150 | kHz  |         |  |



# (4-1) Operating Conditions of Main PLL (In the case of using main clock for input of PLL)

 $(\text{Vcc} = 2.7\text{V to } 5.5\text{V}, \text{Vss} = 0\text{V}, \text{Ta} = -40^{\circ}\text{C to} + 105^{\circ}\text{C})$ 

| Doromotor                                               | Symbol            | Value |     |     | Lloit    | Domorko |
|---------------------------------------------------------|-------------------|-------|-----|-----|----------|---------|
| Parameter                                               | Symbol            | Min   | Тур | Max | Unit     | Remarks |
| PLL oscillation stabilization wait time* (LOCK UP time) | t <sub>LOCK</sub> | 100   | ı   | -   | μs       |         |
| PLL input clock frequency                               | $F_{PLLI}$        | 4     | -   | 16  | MHz      |         |
| PLL multiple rate                                       | -                 | 13    | 1   | 75  | multiple |         |
| PLL macro oscillation clock frequency                   | $F_{PLLO}$        | 200   | -   | 300 | MHz      |         |

<sup>\*:</sup> Time from when the PLL starts operating until the oscillation stabilizes.

#### (4-2) Operating Conditions of Main PLL (In the case of using high-speed internal CR)

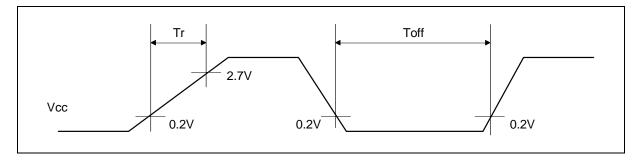
 $(Vcc = 2.7V \text{ to } 5.5V, Vss = 0V, Ta = -40^{\circ}C \text{ to } +105^{\circ}C)$ 

| Parameter                                               | Symbol            | Value |     |     | Unit     | Remarks |
|---------------------------------------------------------|-------------------|-------|-----|-----|----------|---------|
| Farameter                                               | Symbol            | Min   | Тур | Max | Offic    | Remarks |
| PLL oscillation stabilization wait time* (LOCK UP time) | t <sub>LOCK</sub> | 100   | 1   | -   | μs       |         |
| PLL input clock frequency                               | $F_{PLLI}$        | 3.8   | 4   | 4.2 | MHz      |         |
| PLL multiple rate                                       | -                 | 50    | 1   | 71  | multiple |         |
| PLL macro oscillation clock frequency                   | $F_{PLLO}$        | 190   | -   | 300 | MHz      |         |

<sup>\*:</sup> Time from when the PLL starts operating until the oscillation stabilizes.

Note: It needs to input to PLL by internal CR trimming frequency.

#### (5) Reset Input Characteristics


 $(Vcc = 2.7V \text{ to } 5.5V, Vss = 0V, Ta = -40^{\circ}C \text{ to } +105^{\circ}C)$ 

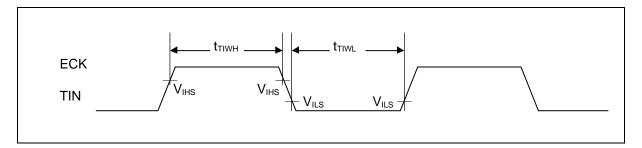
| Parameter        | Symbol             | Pin   | Pin Conditions |     | lue | Unit | Remarks    |
|------------------|--------------------|-------|----------------|-----|-----|------|------------|
| Parameter        | Syllibol           | name  | Conditions     | Min | Max | Oill | IVEIIIAIKS |
| Reset input time | t <sub>INITX</sub> | INITX | -              | 500 | -   | ns   |            |

# (6) Power-on Reset Timing

 $(Vcc = 2.7V \text{ to } 5.5V, Vss = 0V, Ta = -40^{\circ}C \text{ to } + 105^{\circ}C)$ 

|                             |        |      | ( 7 00 - 2.7 | , 10 3.5 t, | 1 55 - 0 1, | 10 C to 1 103 C) |
|-----------------------------|--------|------|--------------|-------------|-------------|------------------|
| Doromotor                   | Cumbal | Pin  | Val          | ue          | Lloit       | Domorko          |
| Parameter                   | Symbol | name | Min          | Max         | Unit        | Remarks          |
| Power supply rising time    | Tr     | VCC  | 0            | -           | ms          |                  |
| Power supply shut down time | Toff   | VCC  | 1            | -           | ms          |                  |

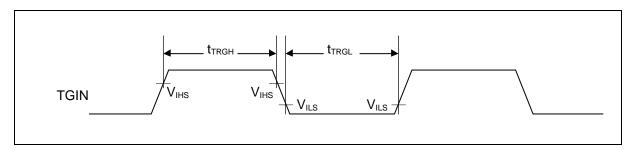





# (7) Base Timer Input Timing

• Timer input timing

 $(Vcc = 2.7V \text{ to } 5.5V, Vss = 0V, Ta = -40^{\circ}C \text{ to } + 105^{\circ}C)$ 


| Doromotor         | Symbol Pin name                        |                                            | Conditions | Val                | lue | Linit | Domorko |
|-------------------|----------------------------------------|--------------------------------------------|------------|--------------------|-----|-------|---------|
| Parameter         | Symbol                                 | FIII Hallie                                | Conditions | Min                | Max | Ullit | Remarks |
| Input pulse width | t <sub>TIWH</sub><br>t <sub>TIWL</sub> | TIOAn/TIOBn<br>(when using as<br>ECK, TIN) | -          | 2t <sub>CYCP</sub> | -   | ns    |         |



• Trigger input timing

$$(Vcc = 2.7V \text{ to } 5.5V, Vss = 0V, Ta = -40^{\circ}C \text{ to } +105^{\circ}C)$$

| Denomenton        | Cumbal Dia nama                        |                                        | Caraditiana | Val                | ue  | 1 1 ! 4 | Damanda |
|-------------------|----------------------------------------|----------------------------------------|-------------|--------------------|-----|---------|---------|
| Parameter         | Symbol                                 | Pin name                               | Conditions  | Min                | Max | Unit    | Remarks |
| Input pulse width | t <sub>TRGH</sub><br>t <sub>TRGL</sub> | TIOAn/TIOBn<br>(when using as<br>TGIN) | -           | 2t <sub>CYCP</sub> | -   | ns      |         |

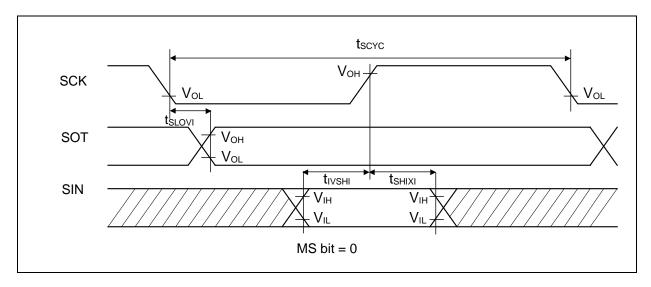


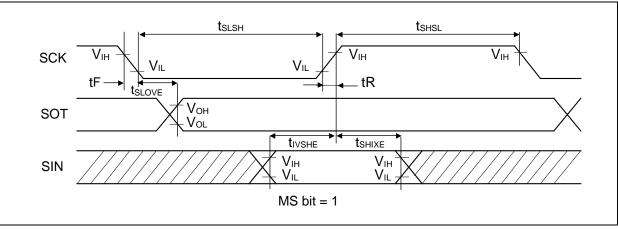
Note:  $t_{CYCP}$  indicates the APB bus clock cycle time.

About the APB bus number which Base Timer is connected to, see "■BLOCK DIAGRAM" in this data sheet.



# (8) UART Timing


• Synchronous serial (SPI = 0, SCINV = 0)


 $(Vcc = 2.7V \text{ to } 5.5V, Vss = 0V, Ta = -40^{\circ}C \text{ to } + 105^{\circ}C)$ 

| Doromotor                                        | Symbol             | Pin          | Conditions         | Vcc <       | 4.5V | Vcc ≥       | 4.5V | Unit  |
|--------------------------------------------------|--------------------|--------------|--------------------|-------------|------|-------------|------|-------|
| Parameter                                        | Symbol             | name         | Conditions         | Min         | Max  | Min         | Max  | Offic |
| Serial clock cycle time                          | t <sub>SCYC</sub>  | SCKx         |                    | 4tcycp      | -    | 4tcycp      | ı    | ns    |
| $SCK \downarrow \rightarrow SOT$ delay time      | t <sub>SLOVI</sub> | SCKx<br>SOTx | Internal shift     | -30         | +30  | - 20        | + 20 | ns    |
| $SIN \rightarrow SCK \uparrow setup time$        | t <sub>IVSHI</sub> | SCKx<br>SINx | clock<br>operation | 50          | -    | 30          | 1    | ns    |
| $SCK \uparrow \rightarrow SIN \text{ hold time}$ | t <sub>SHIXI</sub> | SCKx<br>SINx | орегиноп           | 0           | -    | 0           | ı    | ns    |
| Serial clock "L" pulse width                     | t <sub>SLSH</sub>  | SCKx         |                    | 2tcycp - 10 | -    | 2tcycp - 10 | 1    | ns    |
| Serial clock "H" pulse width                     | $t_{SHSL}$         | SCKx         |                    | tcycp + 10  | -    | tcycp + 10  | -    | ns    |
| $SCK \downarrow \rightarrow SOT$ delay time      | $t_{SLOVE}$        | SCKx<br>SOTx | External shift     | -           | 50   | -           | 30   | ns    |
| $SIN \rightarrow SCK \uparrow setup time$        | $t_{IVSHE}$        | SCKx<br>SINx | clock<br>operation | 10          | -    | 10          | -    | ns    |
| $SCK \uparrow \rightarrow SIN \text{ hold time}$ | t <sub>SHIXE</sub> | SCKx<br>SINx |                    | 20          | -    | 20          | -    | ns    |
| SCK fall time                                    | tF                 | SCKx         |                    | -           | 5    | -           | 5    | ns    |
| SCK rise time                                    | tR                 | SCKx         |                    | -           | 5    | -           | 5    | ns    |

- Notes: The above characteristics apply to CLK synchronous mode.
  - t<sub>CYCP</sub> indicates the APB bus clock cycle time. About the APB bus number which UART is connected to, see "■BLOCK DIAGRAM" in this data
  - These characteristics only guarantee the same relocate port number. For example, the combination of SCLKx\_0 and SOTx\_1 is not guaranteed.
  - When the external load capacitance = 30pF.

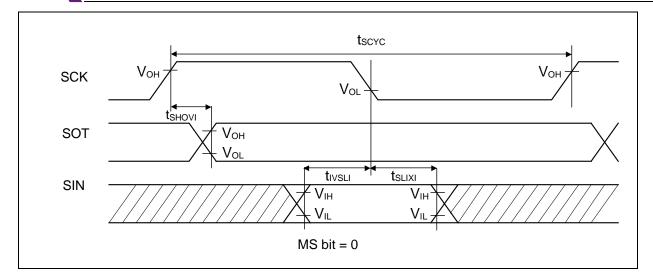


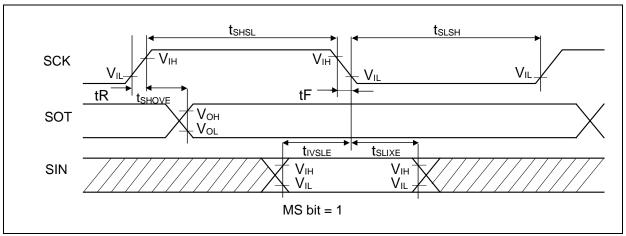






• Synchronous serial (SPI = 0, SCINV = 1)


 $(Vcc = 2.7V \text{ to } 5.5V, Vss = 0V, Ta = -40^{\circ}C \text{ to } + 105^{\circ}C)$ 


| Parameter                                          | Symbol             | Pin          | Conditions         | Vcc < 4     | 4.5V | Vcc ≥       | 4.5V | Unit  |
|----------------------------------------------------|--------------------|--------------|--------------------|-------------|------|-------------|------|-------|
| Farameter                                          | Symbol             | name         | Conditions         | Min         | Max  | Min         | Max  | Offic |
| Serial clock cycle time                            | $t_{SCYC}$         | SCKx         |                    | 4tcycp      | -    | 4tcycp      | -    | ns    |
| $SCK \uparrow \rightarrow SOT$ delay time          | t <sub>SHOVI</sub> | SCKx<br>SOTx | Internal shift     | -30         | +30  | - 20        | + 20 | ns    |
| $SIN \rightarrow SCK \downarrow setup time$        | t <sub>IVSLI</sub> | SCKx<br>SINx | clock<br>operation | 50          | -    | 30          | 1    | ns    |
| $SCK \downarrow \rightarrow SIN \text{ hold time}$ | t <sub>SLIXI</sub> | SCKx<br>SINx |                    | 0           | -    | 0           | 1    | ns    |
| Serial clock "L" pulse width                       | t <sub>SLSH</sub>  | SCKx         |                    | 2tcycp - 10 | -    | 2tcycp - 10 | ı    | ns    |
| Serial clock "H" pulse width                       | $t_{SHSL}$         | SCKx         |                    | tcycp + 10  | -    | tcycp + 10  | -    | ns    |
| $SCK \uparrow \rightarrow SOT$ delay time          | t <sub>SHOVE</sub> | SCKx<br>SOTx | External shift     | ı           | 50   | ı           | 30   | ns    |
| $SIN \rightarrow SCK \downarrow setup time$        | $t_{IVSLE}$        | SCKx<br>SINx | clock<br>operation | 10          | -    | 10          | -    | ns    |
| $SCK \downarrow \rightarrow SIN \text{ hold time}$ | t <sub>SLIXE</sub> | SCKx<br>SINx |                    | 20          | -    | 20          | -    | ns    |
| SCK fall time                                      | tF                 | SCKx         |                    | -           | 5    | -           | 5    | ns    |
| SCK rise time                                      | tR                 | SCKx         |                    | -           | 5    | -           | 5    | ns    |

Notes: • The above characteristics apply to CLK synchronous mode.

- t<sub>CYCP</sub> indicates the APB bus clock cycle time.
   About the APB bus number which UART is connected to, see "■BLOCK DIAGRAM" in this data sheet.
- These characteristics only guarantee the same relocate port number. For example, the combination of SCLKx\_0 and SOTx\_1 is not guaranteed.
- When the external load capacitance = 30pF.

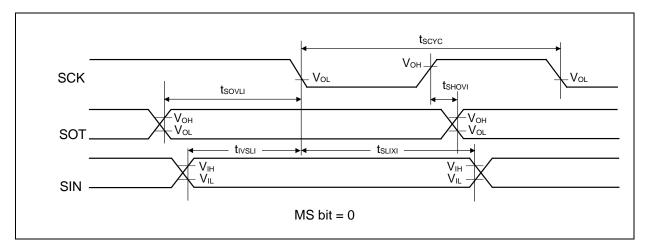


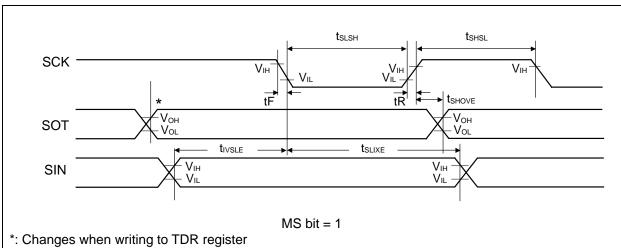






• Synchronous serial (SPI = 1, SCINV = 0)


 $(Vcc = 2.7V \text{ to } 5.5V, Vss = 0V, Ta = -40^{\circ}C \text{ to } + 105^{\circ}C)$ 


| Parameter                                          | Symbol             | nbol Pin Conditions |                      | Vcc < 4     | 4.5V | Vcc ≥       | Unit |       |
|----------------------------------------------------|--------------------|---------------------|----------------------|-------------|------|-------------|------|-------|
| Farameter                                          | Symbol             | name                | Conditions           | Min         | Max  | Min         | Max  | Offic |
| Serial clock cycle time                            | t <sub>SCYC</sub>  | SCKx                |                      | 4tcycp      | -    | 4tcycp      | i    | ns    |
| $SCK \uparrow \rightarrow SOT$ delay time          | t <sub>SHOVI</sub> | SCKx<br>SOTx        |                      | -30         | +30  | - 20        | + 20 | ns    |
| $SIN \rightarrow SCK \downarrow setup time$        | t <sub>IVSLI</sub> | SCKx<br>SINx        | Internal shift clock | 50          | 1    | 30          | ı    | ns    |
| $SCK \downarrow \rightarrow SIN \text{ hold time}$ | t <sub>SLIXI</sub> | SCKx<br>SINx        | operation            | 0           | 1    | 0           | -    | ns    |
| $SOT \rightarrow SCK \downarrow delay time$        | t <sub>SOVLI</sub> | SCKx<br>SOTx        |                      | 2tcycp - 30 | 1    | 2tcycp - 30 | 1    | ns    |
| Serial clock "L" pulse width                       | t <sub>SLSH</sub>  | SCKx                |                      | 2tcycp - 10 | -    | 2tcycp - 10 | ı    | ns    |
| Serial clock "H" pulse width                       | t <sub>SHSL</sub>  | SCKx                |                      | tcycp + 10  | -    | tcycp + 10  | -    | ns    |
| $SCK \uparrow \rightarrow SOT$ delay time          | t <sub>SHOVE</sub> | SCKx<br>SOTx        | External shift clock | -           | 50   | -           | 30   | ns    |
| $SIN \rightarrow SCK \downarrow setup time$        | t <sub>IVSLE</sub> | SCKx<br>SINx        | operation            | 10          | -    | 10          | ı    | ns    |
| $SCK \downarrow \rightarrow SIN \text{ hold time}$ | $t_{\rm SLIXE}$    | SCKx<br>SINx        |                      | 20          | -    | 20          | -    | ns    |
| SCK fall time                                      | tF                 | SCKx                |                      | -           | 5    | -           | 5    | ns    |
| SCK rise time                                      | tR                 | SCKx                |                      | -           | 5    | -           | 5    | ns    |

Notes: • The above characteristics apply to CLK synchronous mode.

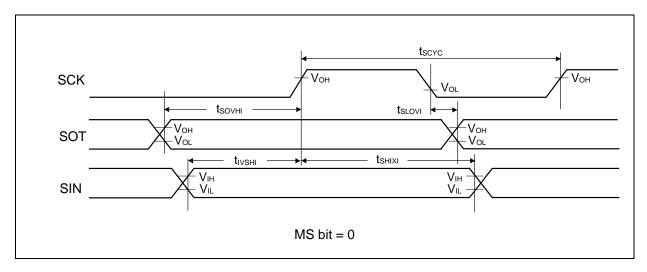
- t<sub>CYCP</sub> indicates the APB bus clock cycle time.
   About the APB bus number which UART is connected to, see "■BLOCK DIAGRAM" in this data
- These characteristics only guarantee the same relocate port number. For example, the combination of SCLKx\_0 and SOTx\_1 is not guaranteed.
- When the external load capacitance = 30pF.

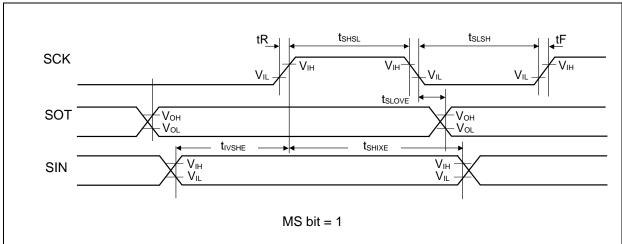








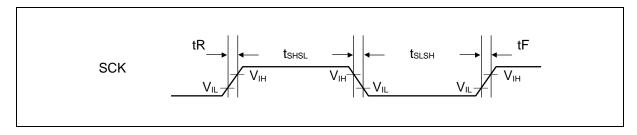

• Synchronous serial (SPI = 1, SCINV = 1)


 $(Vcc = 2.7V \text{ to } 5.5V, Vss = 0V, Ta = -40^{\circ}C \text{ to } + 105^{\circ}C)$ 

| Parameter                                        | Symbol             | Pin          | Conditions           | Vcc < 4     | 4.5V | Vcc ≥       | 4.5V | Unit |
|--------------------------------------------------|--------------------|--------------|----------------------|-------------|------|-------------|------|------|
| Farameter                                        | Symbol             | name         | Conditions           | Min         | Max  | Min         | Max  | Unit |
| Serial clock cycle time                          | $t_{SCYC}$         | SCKx         |                      | 4tcycp      | -    | 4tcycp      | -    | ns   |
| $SCK \downarrow \rightarrow SOT$ delay time      | $t_{ m SLOVI}$     | SCKx<br>SOTx |                      | -30         | +30  | - 20        | + 20 | ns   |
| $SIN \rightarrow SCK \uparrow setup time$        | t <sub>IVSHI</sub> | SCKx<br>SINx | Internal shift clock | 50          | -    | 30          | -    | ns   |
| $SCK \uparrow \rightarrow SIN$ hold time         | t <sub>SHIXI</sub> | SCKx<br>SINx | operation            | 0           | ı    | 0           | ı    | ns   |
| $SOT \rightarrow SCK \uparrow delay time$        | t <sub>SOVHI</sub> | SCKx<br>SOTx |                      | 2tcycp - 30 | -    | 2tcycp - 30 | -    | ns   |
| Serial clock "L" pulse width                     | t <sub>SLSH</sub>  | SCKx         |                      | 2tcycp - 10 | 1    | 2tcycp - 10 | 1    | ns   |
| Serial clock "H" pulse width                     | t <sub>SHSL</sub>  | SCKx         |                      | tcycp + 10  | ı    | tcycp + 10  | ı    | ns   |
| $SCK \downarrow \rightarrow SOT$ delay time      | t <sub>SLOVE</sub> | SCKx<br>SOTx | External shift clock | -           | 50   | -           | 30   | ns   |
| $SIN \rightarrow SCK \uparrow setup time$        | t <sub>IVSHE</sub> | SCKx<br>SINx | operation            | 10          | -    | 10          | -    | ns   |
| $SCK \uparrow \rightarrow SIN \text{ hold time}$ | t <sub>SHIXE</sub> | SCKx<br>SINx |                      | 20          | -    | 20          | -    | ns   |
| SCK fall time                                    | tF                 | SCKx         |                      | -           | 5    | -           | 5    | ns   |
| SCK rise time                                    | tR                 | SCKx         |                      | -           | 5    | -           | 5    | ns   |

- Notes: The above characteristics apply to CLK synchronous mode.
  - t<sub>CYCP</sub> indicates the APB bus clock cycle time. About the APB bus number which UART is connected to, see "■BLOCK DIAGRAM" in this data
  - These characteristics only guarantee the same relocate port number. For example, the combination of SCLKx\_0 and SOTx\_1 is not guaranteed.
  - When the external load capacitance = 30pF.







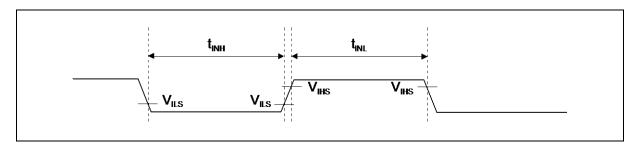

• External clock (EXT = 1) : asynchronous only

 $(Vcc = 2.7V \text{ to } 5.5V, Vss = 0V, Ta = -40^{\circ}C \text{ to } +105^{\circ}C)$ 

| Parameter                    | Symbol     | Conditions   | Min        | Max | Unit | Remarks |
|------------------------------|------------|--------------|------------|-----|------|---------|
| Serial clock "L" pulse width | $t_{SLSH}$ |              | tcycp + 10 | -   | ns   |         |
| Serial clock "H" pulse width | $t_{SHSL}$ | C = 20mE     | tcycp + 10 | -   | ns   |         |
| SCK fall time                | tF         | $C_L = 30pF$ | -          | 5   | ns   |         |
| SCK rise time                | tR         |              | -          | 5   | ns   |         |






# (9) External Input Timing

 $(Vcc = 2.7V \text{ to } 5.5V, Vss = 0V, Ta = -40^{\circ}C \text{ to } +105^{\circ}C)$ 

| Doromotor         | Cymbol                                | Din nome       | Conditions                     | Value                |     | Unit | Domarko                     |  |
|-------------------|---------------------------------------|----------------|--------------------------------|----------------------|-----|------|-----------------------------|--|
| Parameter         | Symbol                                | Pin name       | Conditions                     | Min                  | Max | S    | Remarks                     |  |
|                   |                                       | ADTG           |                                |                      |     |      | A/D converter trigger input |  |
|                   |                                       | FRCKx          | -                              | $2t_{CYCP}^{*1}$     | -   | ns   | Free-run timer input clock  |  |
|                   |                                       | ICxx           |                                |                      |     |      | Input capture               |  |
| Input pulse width | t <sub>INH,</sub><br>t <sub>INL</sub> | DTTIxX         | DTTIxX - 2t <sub>CYCP</sub> *1 |                      | -   | ns   | Wave form generator         |  |
|                   |                                       | INT00 to INT15 | -                              | $2t_{CYCP} + 100*^1$ | -   | ns   | External interrupt          |  |
|                   |                                       | NMIX           |                                | 500* <sup>2</sup>    | -   | ns   | NMI                         |  |
|                   |                                       | WKUPx          | -                              | 820*3                | -   | ns   | Deep stand-by wake up       |  |

<sup>\*1 :</sup> t<sub>CYCP</sub> indicates the APB bus clock cycle time except stop when in stop mode, in rtc mode, in timer mode. About the APB bus number which A/D converter, Multi-function Timer, External interrupt are connected to, see "■BLOCK DIAGRAM" in this data sheet.

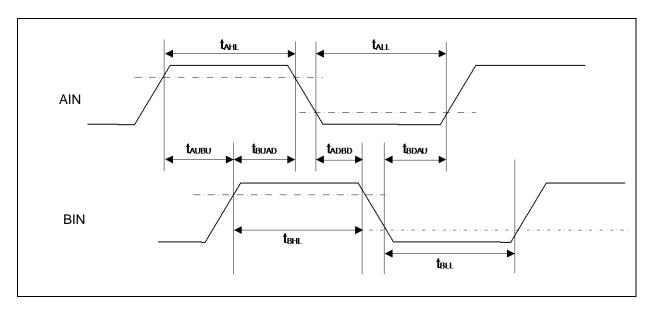
<sup>\*3 :</sup> When in deep stand-by stop mode, in deep stand-by rtc mode.



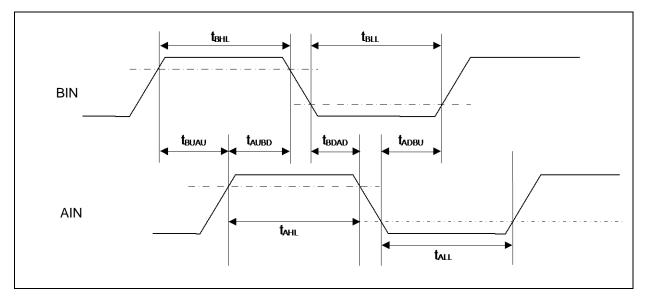
<sup>\*2:</sup> When in stop mode, in rtc mode, in timer mode.

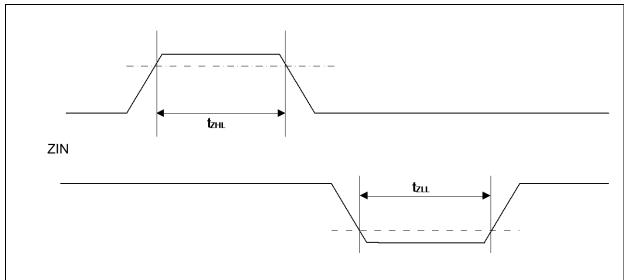


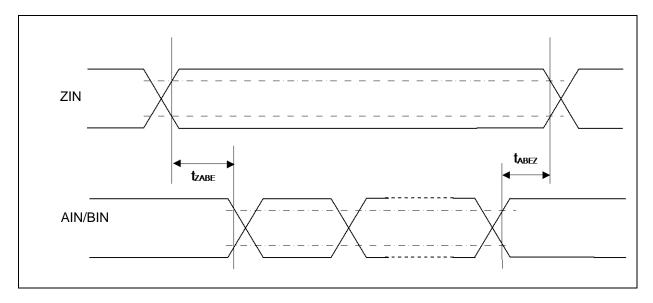
# (10) Quadrature Position/Revolution Counter timing


 $(\text{Vcc} = 2.7\text{V to } 5.5\text{V}, \text{Vss} = 0\text{V}, \text{Ta} = -40^{\circ}\text{C to} + 105^{\circ}\text{C})$ 

| Danamatan                  | 0                 |              | V to 5.5 v, vss = 0  | •   |      |
|----------------------------|-------------------|--------------|----------------------|-----|------|
| Parameter                  | Symbol            | Conditions   | Min                  | Max | Unit |
| AIN pin "H" width          | $t_{AHL}$         | -            |                      |     |      |
| AIN pin "L" width          | $t_{ALL}$         | =            |                      |     |      |
| BIN pin "H" width          | $t_{ m BHL}$      | -            |                      |     |      |
| BIN pin "L" width          | $t_{ m BLL}$      | =            |                      |     |      |
| BIN rise time from         | +                 | PC_Mode2 or  |                      |     |      |
| AIN pin "H" level          | $t_{AUBU}$        | PC_Mode3     |                      |     |      |
| AIN fall time from         | +                 | PC_Mode2 or  |                      |     |      |
| BIN pin "H" level          | $t_{ m BUAD}$     | PC_Mode3     |                      |     |      |
| BIN fall time from         | t                 | PC_Mode2 or  |                      |     |      |
| AIN pin "L" level          | $t_{ m ADBD}$     | PC_Mode3     |                      |     |      |
| AIN rise time from         | t                 | PC_Mode2 or  |                      |     |      |
| BIN pin "L" level          | $t_{ m BDAU}$     | PC_Mode3     |                      |     |      |
| AIN rise time from         | t                 | PC_Mode2 or  | 2t <sub>CYCP</sub> * | _   | ns   |
| BIN pin "H" level          | $t_{ m BUAU}$     | PC_Mode3     | ZiCYCP               | _   | 118  |
| BIN fall time from         | t                 | PC_Mode2 or  |                      |     |      |
| AIN pin "H" level          | $t_{AUBD}$        | PC_Mode3     |                      |     |      |
| AIN fall time from         | $t_{ m BDAD}$     | PC_Mode2 or  |                      |     |      |
| BIN pin "L" level          | <sup>t</sup> BDAD | PC_Mode3     |                      |     |      |
| BIN rise time from         | t                 | PC_Mode2 or  |                      |     |      |
| AIN pin "L" level          | $t_{ m ADBU}$     | PC_Mode3     |                      |     |      |
| ZIN pin "H" width          | $t_{ m ZHL}$      | QCR:CGSC="0" |                      |     |      |
| ZIN pin "L" width          | $t_{ZLL}$         | QCR:CGSC="0" |                      |     |      |
| AIN/BIN rise and fall time | taine             | QCR:CGSC="1" |                      |     |      |
| from determined ZIN level  | $t_{ZABE}$        | QCR.COBC= 1  | 1                    |     |      |
| Determined ZIN level from  | $t_{ m ABEZ}$     | QCR:CGSC="1" |                      |     |      |
| AIN/BIN rise and fall time | ABEZ              | ZC17.CODC= 1 |                      |     |      |


<sup>\*:</sup> t<sub>CYCP</sub> indicates the APB bus clock cycle time except stop when in stop mode, in timer mode.


About the APB bus number which Quadrature Position/Revolution Counter is connected to, see "


BLOCK DIAGRAM" in this data sheet.





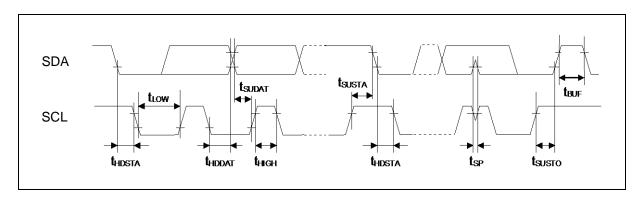








# (11) I<sup>2</sup>C Timing


 $(Vcc = 2.7V \text{ to } 5.5V, Vss = 0V, Ta = -40^{\circ}C \text{ to } +105^{\circ}C)$ 

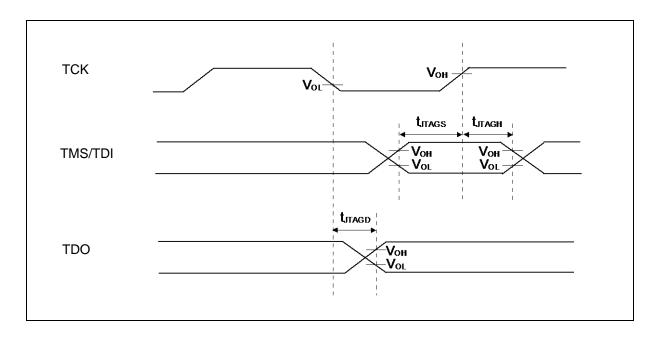
| Parameter                                                             | Symbol             | Conditions                           | Typical mode      |                    | mode              |       | Unit | Remarks |
|-----------------------------------------------------------------------|--------------------|--------------------------------------|-------------------|--------------------|-------------------|-------|------|---------|
|                                                                       |                    |                                      | Min               | Max                | Min               | Max   |      |         |
| SCL clock frequency                                                   | $F_{SCL}$          |                                      | 0                 | 100                | 0                 | 400   | kHz  |         |
| (Repeated) START condition                                            |                    |                                      |                   |                    |                   |       |      |         |
| hold time                                                             | $t_{HDSTA}$        |                                      | 4.0               | -                  | 0.6               | -     | μs   |         |
| $SDA \downarrow \rightarrow SCL \downarrow$                           |                    |                                      |                   |                    |                   |       |      |         |
| SCLclock "L" width                                                    | $t_{LOW}$          |                                      | 4.7               | -                  | 1.3               | -     | μs   |         |
| SCLclock "H" width                                                    | $t_{HIGH}$         |                                      | 4.0               | -                  | 0.6               | -     | μs   |         |
| (Repeated) START setup time $SCL \uparrow \rightarrow SDA \downarrow$ | $t_{SUSTA}$        | C = 20mE                             | 4.7               | -                  | 0.6               | -     | μs   |         |
| Data hold time $SCL \downarrow \rightarrow SDA \downarrow \uparrow$   | t <sub>HDDAT</sub> | $C_L = 30pF,$ $R = (Vp/I_{OL})^{*1}$ | 0                 | 3.45* <sup>2</sup> | 0                 | 0.9*3 | μs   |         |
| Data setup time $SDA \downarrow \uparrow \rightarrow SCL \uparrow$    | t <sub>SUDAT</sub> |                                      | 250               | -                  | 100               | -     | ns   |         |
| STOP condition setup time SCL $\uparrow \rightarrow$ SDA $\uparrow$   | t <sub>SUSTO</sub> |                                      | 4.0               | -                  | 0.6               | -     | μs   |         |
| Bus free time between "STOP condition" and "START condition"          | t <sub>BUF</sub>   |                                      | 4.7               | -                  | 1.3               | -     | μs   |         |
| Noise filter                                                          | $t_{SP}$           | -                                    | $2 t_{CYCP}^{*4}$ | -                  | $2 t_{CYCP}^{*4}$ | -     | ns   |         |

- \*1 : R and C represent the pull-up resistance and load capacitance of the SCL and SDA lines, respectively. Vp indicates the power supply voltage of the pull-up resistance and  $I_{OL}$  indicates  $V_{OL}$  guaranteed current.
- \*2 : The maximum t<sub>HDDAT</sub> must satisfy that it does not extend at least "L" period (t<sub>LOW</sub>) of device's SCL signal.
- \*3 : A high-speed mode  $I^2C$  bus device can be used on a standard mode  $I^2C$  bus system as long as the device satisfies the requirement of " $t_{SUDAT} \ge 250$  ns".
- \*4 : t<sub>CYCP</sub> is the APB bus clock cycle time.

  About the APB bus number that I²C is connected to, see "■BLOCK DIAGRAM" in this data sheet.

  To use I²C, set the peripheral bus clock at 8 MHz or more.






# (12) JTAG Timing

 $(Vcc = 2.7V \text{ to } 5.5V, Vss = 0V, Ta = -40^{\circ}C \text{ to } + 105^{\circ}C)$ 

| Doromotor            | Symbol             | Din nama | Conditions     | Va  | alue | Unit  | Remarks |
|----------------------|--------------------|----------|----------------|-----|------|-------|---------|
| Parameter            | Symbol             | Pin name | Conditions     | Min | Max  | Offic | Remarks |
| TMS, TDI setup       | +                  | TCK,     | $Vcc \ge 4.5V$ | 15  |      | no    |         |
| time                 | $t_{ m JTAGS}$     | TMS, TDI | Vcc < 4.5V     | 13  | ı    | ns    |         |
| TMS, TDI hold time   | +                  | TCK,     | $Vcc \ge 4.5V$ | 15  |      | ne    |         |
| TWIS, TDI HOIG UITIE | t <sub>JTAGH</sub> | TMS, TDI | Vcc < 4.5V     | 13  | -    | ns    |         |
| TDO delevitime       |                    | TCK,     | $Vcc \ge 4.5V$ | -   | 25   |       |         |
| TDO delay time       | $t_{ m JTAGD}$     | TDO      | Vcc < 4.5V     | -   | 45   | ns    |         |

Note: When the external load capacitance = 30pF.





#### 5. 12-bit A/D Converter

· Electrical characteristics for the A/D converter

 $(Vcc = AVcc = 2.7V \text{ to } 5.5V, Vss = AVss = 0V, Ta = -40^{\circ}C \text{ to } + 105^{\circ}C)$ 

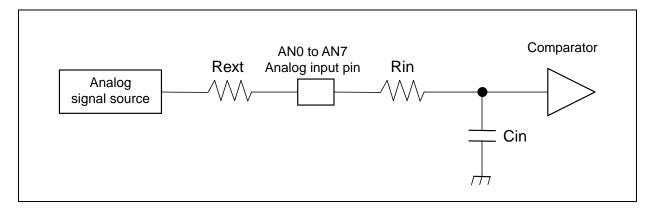
| Doromotor                                     | Pin           | ,          | Value | ·         | Unit | Domorko                          |
|-----------------------------------------------|---------------|------------|-------|-----------|------|----------------------------------|
| Parameter                                     | name          | Min        | Тур   | Max       | Unit | Remarks                          |
| Resolution                                    | -             | -          | -     | 12        | bit  |                                  |
| Linearity error                               | -             | - 4.5      | -     | + 4.5     | LSB  |                                  |
| Differential linearity error                  | -             | -2.5       | -     | + 2.5     | LSB  |                                  |
| Zero transition voltage                       | AN0 to<br>AN7 | - 20       | -     | + 20      | mV   | AVRH = 2.7V  to  5.5V            |
| Full-scale transition voltage                 | AN0 to<br>AN7 | AVRH - 20  | -     | AVRH + 20 | mV   |                                  |
| Conversion time                               | -             | $1.0^{*1}$ | -     | -         | μs   | $AVcc \ge 4.5V$                  |
| Compling time                                 | Ts            | *2         | -     | -         |      | $AVcc \ge 4.5V$                  |
| Sampling time                                 | 18            | *2         | -     | -         | ns   | AVcc < 4.5V                      |
| C 1 1 1 43                                    | TD 1          | 50         |       | 2000      |      | $AVcc \ge 4.5V$                  |
| Compare clock cycle*3                         | Teck          | 50         | -     | 2000      | ns   | AVcc < 4.5V                      |
| State transition time to operation permission | Tstt          | 1.0        | -     | -         | μs   |                                  |
| Power supply current                          | AVICC         | -          | 0.57  | 0.72      | mA   | A/D 1unit operation              |
| (analog + digital)                            | AVCC          | -          | 0.06  | 20        | μΑ   | When A/D stop                    |
| Reference power supply current                | AVRH          | -          | 1.1   | 1.96      | mA   | A/D 1unit operation<br>AVRH=5.5V |
| (between AVRH to AVSS)                        | AVKII         | -          | 0.06  | 4         | μΑ   | When A/D stop (1unit)            |
| Analog input capacity                         | Cin           | -          | -     | 12.9      | pF   |                                  |
| Analog input resistance                       | Rin           | -          | -     | 3.8       | kΩ   | $AVcc \ge 4.5V$ $AVcc < 4.5V$    |
| Interchannel disparity                        | -             | -          | -     | 4         | LSB  |                                  |
| Analog port input current                     | AN0 to<br>AN7 | -          | -     | 5         | μΑ   |                                  |
| Analog input voltage                          | AN0 to<br>AN7 | AVSS       |       | AVRH      | V    |                                  |
| Reference voltage                             | AVRH          | 2.7        | -     | AVCC      | V    |                                  |

<sup>\*1:</sup> Conversion time is the value of sampling time (Ts) + compare time (Tc).

The condition of the minimum conversion time is the value of sampling time: 300ns, the value of sampling time: 700ns ( $AVcc \ge 4.5V$ ).

Ensure that it satisfies the value of sampling time (Ts) and compare clock cycle (Tcck).

For setting\*<sup>4</sup> of sampling time and compare clock cycle, see "Chapter:A/D Converter" in "FM3 Family PERIPHERAL MANUAL Analog Macro Part".


About the APB bus number which A/D Converter is connected to, see "BLOCK DIAGRAM" in this data sheet.

<sup>\*2:</sup> A necessary sampling time changes by external impedance. Ensure that it set the sampling time to satisfy (Equation 1).

<sup>\*3:</sup> Compare time (Tc) is the value of (Equation 2).

<sup>\*4:</sup> The register setting of the A/D Converter is reflected by the timing of the APB bus clock. Sampling clock and compare clock are set in base clock (HCLK).





(Equation 1) Ts  $\geq$  (Rin + Rext)  $\times$  Cin  $\times$  9

Ts : Sampling time

Rin : input resistance of A/D =  $2k\Omega$  at  $4.5 \le AVCC \le 5.5$ 

input resistance of A/D =  $3.8k\Omega$  at  $2.7 \le AVCC \le 4.5$ 

Cin : input capacity of A/D = 12.9pF at  $2.7 \le AVCC \le 5.5$ 

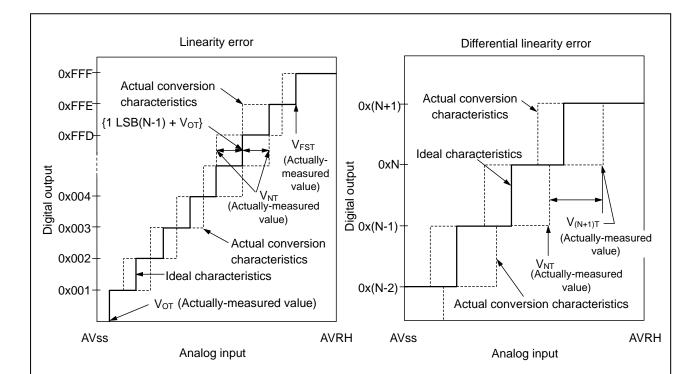
Rext: Output impedance of external circuit

(Equation 2)  $Tc = Tcck \times 14$ 

Tc : Compare time Tcck : Compare clock cycle



#### · Definition of 12-bit A/D Converter Terms


Resolution
 Linearity error
 Analog variation that is recognized by an A/D converter.
 Deviation of the line between the zero-transition point

 $(0b111111111110 \leftarrow \rightarrow 0b111111111111)$  from the actual conversion

characteristics.

• Differential linearity error : Deviation from the ideal value of the input voltage that is required to change

the output code by 1 LSB.



Linearity error of digital output N = 
$$\frac{V_{NT} - \{1LSB \times (N-1) + V_{OT}\}}{1LSB}$$
 [LSB]

Differential linearity error of digital output N = 
$$\frac{V_{(N+1)T} - V_{NT}}{1LSB}$$
 - 1 [LSB]

$$1LSB = \frac{V_{FST} - V_{OT}}{4094}$$

N : A/D converter digital output value.

 $V_{OT}$ : Voltage at which the digital output changes from 0x000 to 0x001.  $V_{FST}$ : Voltage at which the digital output changes from 0xFFE to 0xFFF.  $V_{NT}$ : Voltage at which the digital output changes from 0x(N - 1) to 0xN.



# 6. Low-voltage Detection Characteristics(1) Low-voltage Detection Reset

 $(Ta = -40^{\circ}C \text{ to } + 105^{\circ}C)$ 

| Doromotor        | Symbol | Conditions |      | Value |      | Unit  | Remarks            |
|------------------|--------|------------|------|-------|------|-------|--------------------|
| Parameter        | Symbol | Conditions | Min  | Тур   | Max  | Offic | Remarks            |
| Detected voltage | VDL    | -          | 2.25 | 2.45  | 2.65 | V     | When voltage drops |
| Released voltage | VDH    | -          | 2.30 | 2.50  | 2.70 | V     | When voltage rises |

# (2) Interrupt of Low-voltage Detection

 $(Ta = -40^{\circ}C \text{ to} + 105^{\circ}C)$ 

| Parameter                   | Cymbol     | Conditions     |      | Value |               | Unit  | Remarks            |
|-----------------------------|------------|----------------|------|-------|---------------|-------|--------------------|
| Parameter                   | Symbol     | Conditions     | Min  | Тур   | Max           | Offic | Remarks            |
| Detected voltage            | VDL        | SVHI = 0000    | 2.58 | 2.8   | 3.02          | V     | When voltage drops |
| Released voltage            | VDH        | 3 V HI = 0000  | 2.67 | 2.9   | 3.13          | V     | When voltage rises |
| Detected voltage            | VDL        | SVHI = 0001    | 2.76 | 3.0   | 3.24          | V     | When voltage drops |
| Released voltage            | VDH        | 3 V HI = 0001  | 2.85 | 3.1   | 3.34          | V     | When voltage rises |
| Detected voltage            | VDL        | SVHI = 0010    | 2.94 | 3.2   | 3.45          | V     | When voltage drops |
| Released voltage            | VDH        | 3 V HI = 0010  | 3.04 | 3.3   | 3.56          | V     | When voltage rises |
| Detected voltage            | VDL        | SVHI = 0011    | 3.31 | 3.6   | 3.88          | V     | When voltage drops |
| Released voltage            | VDH        | 3 V III – 0011 | 3.40 | 3.7   | 3.99          | V     | When voltage rises |
| Detected voltage            | VDL        | SVHI = 0100    | 3.40 | 3.7   | 3.99          | V     | When voltage drops |
| Released voltage            | VDH        | 3 V III = 0100 | 3.50 | 3.8   | 4.10          | V     | When voltage rises |
| Detected voltage            | VDL        | SVHI = 0111    | 3.68 | 4.0   | 4.32          | V     | When voltage drops |
| Released voltage            | VDH        | 3VIII - 0111   | 3.77 | 4.1   | 4.42          | V     | When voltage rises |
| Detected voltage            | VDL        | SVHI = 1000    | 3.77 | 4.1   | 4.42          | V     | When voltage drops |
| Released voltage            | VDH        | 3 V III – 1000 | 3.86 | 4.2   | 4.53          | V     | When voltage rises |
| Detected voltage            | VDL        | SVHI = 1001    | 3.86 | 4.2   | 4.53          | V     | When voltage drops |
| Released voltage            | VDH        | 3 V III — 1001 | 3.96 | 4.3   | 4.64          | V     | When voltage rises |
| LVD stabilization wait time | $T_{LVDW}$ | -              | -    | -     | 2240 × tcycp* | μs    |                    |

<sup>\*:</sup> t<sub>CYCP</sub> indicates the APB2 bus clock cycle time.



# 7. MainFlash Memory Write/Erase Characteristics

 $(Vcc = 2.7V \text{ to } 5.5V, Ta = -40^{\circ}C \text{ to } + 105^{\circ}C)$ 

| Porc                     | ımeter       | Value |     |      | Unit  | Remarks                                     |
|--------------------------|--------------|-------|-----|------|-------|---------------------------------------------|
| Faia                     |              | Min   | Тур | Max  | Offic | Remarks                                     |
| Sector erase             | Large Sector |       | 0.7 | 3.7  | s     | Includes write time prior to internal       |
| time                     | Small Sector | -     | 0.3 | 1.1  | 3     | erase                                       |
| Half word (16-write time | -bit)        | -     | 12  | 384  | μs    | Not including system-level overhead time    |
| Chip erase tim           | e            | -     | 3.8 | 16.2 | s     | Includes write time prior to internal erase |

#### Erase/write cycles and data hold time

| Erase/write cycles (cycle) | Data hold time (year) |
|----------------------------|-----------------------|
| 1,000                      | 20*                   |
| 10,000                     | 10*                   |
| 100,000                    | 5*                    |

<sup>\*:</sup> This value comes from the technology qualification (using Arrhenius equation to translate high temperature measurements into normalized value at  $+85^{\circ}$ C).

# 8. WorkFlash Memory Write/Erase Characteristics

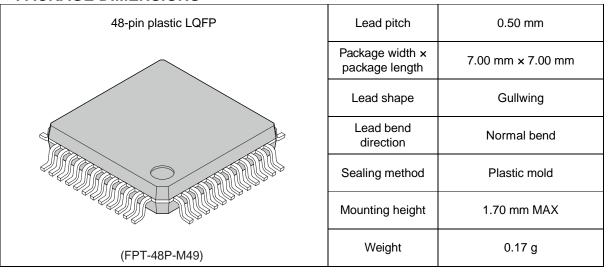
 $(Vcc = 2.7V \text{ to } 5.5V, Ta = -40^{\circ}C \text{ to } + 105^{\circ}C)$ 

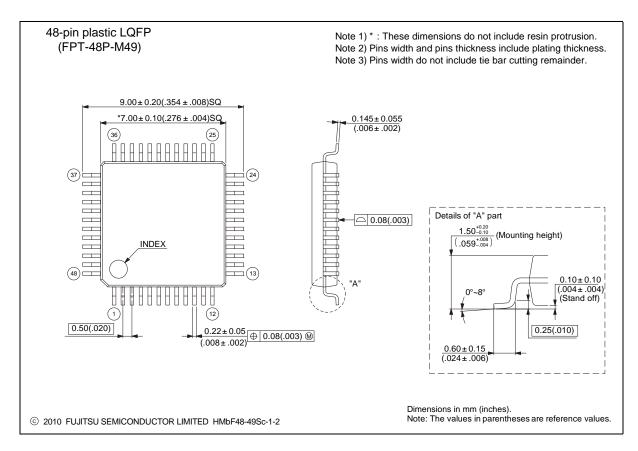
| Doromotor                        | Value |              |     | l loit | Domonico                                    |  |
|----------------------------------|-------|--------------|-----|--------|---------------------------------------------|--|
| Parameter                        | Min   | Typ Max Unit |     | Unit   | Remarks                                     |  |
| Sector erase time                | -     | 0.3          | 1.5 | S      | Includes write time prior to internal erase |  |
| Half word (16-bit)<br>write time | -     | 20           | 384 | μs     | Not including system-level overhead time    |  |
| Chip erase time                  | -     | 1.2          | 6   | S      | Includes write time prior to internal erase |  |

#### Erase/write cycles and data hold time

| Erase/write cycles (cycle) | Data hold time (year) |
|----------------------------|-----------------------|
| 1,000                      | 20*                   |
| 10,000                     | 10*                   |

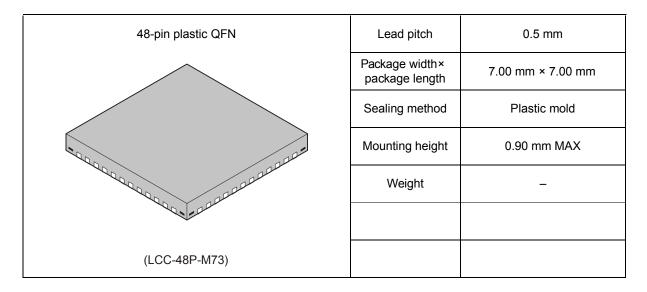
<sup>\*:</sup> This value comes from the technology qualification (using Arrhenius equation to translate high temperature measurements into normalized value at + 85°C).

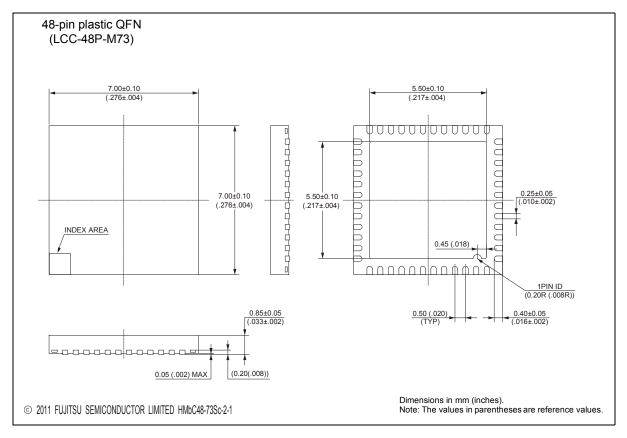




# ■ ORDERING INFORMATION

| Part number   | Package                       |  |  |  |
|---------------|-------------------------------|--|--|--|
| MB9AF111KPMC  | Plastic • LQFP 48-pin         |  |  |  |
| MB9AF112KPMC  | (0.5mm pitch), (FPT-48P-M49)  |  |  |  |
| MB9AF111KPMC1 | Plastic • LQFP 52-pin         |  |  |  |
| MB9AF112KPMC1 | (0.65mm pitch), (FPT-52P-M02) |  |  |  |
| MB9AF111KQN   | Plastic • QFN 48-pin          |  |  |  |
| MB9AF112KQN   | (0.5mm pitch), (LCC-48P-M73)  |  |  |  |



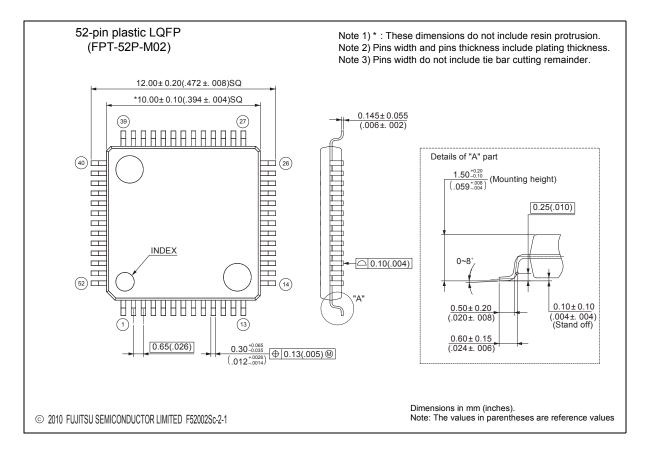

# ■ PACKAGE DIMENSIONS






Please check the latest package dimension at the following URL. http://edevice.fujitsu.com/package/en-search/








Please check the latest package dimension at the following URL. http://edevice.fujitsu.com/package/en-search/



| 52-pin plastic LQFP | Lead pitch                     | 0.65 mm              |
|---------------------|--------------------------------|----------------------|
|                     | Package width × package length | 10.00 × 10.00 mm     |
|                     | Lead shape                     | Gullwing             |
|                     | Sealing method                 | Plastic mold         |
|                     | Mounting height                | 1.70 mm MAX          |
|                     | Weight                         | 0.32 g               |
| (FPT-52P-M02)       | Code<br>(Reference)            | P-LFQFP52-10×10-0.65 |



Please check the latest package dimension at the following URL. http://edevice.fujitsu.com/package/en-search/



# ■ MAJOR CHANGES

| Page        | Section                                            | Change Results                                                                            |
|-------------|----------------------------------------------------|-------------------------------------------------------------------------------------------|
| Revision 1. | 0                                                  |                                                                                           |
| -           | -                                                  | PRELIMINARY → Data sheet                                                                  |
| _           | ■PRODUCT LINEUP                                    | Added the pin count.                                                                      |
| 7           | •Function                                          |                                                                                           |
| 8           | ■PACKAGES                                          | Revised from "Planning".                                                                  |
| 23          | ■I/O CIRCUIT TYPE                                  | Corrected the following description to "TypeB".  Digital output → Digital input           |
|             | ■BLOCK DIAGRAM                                     | Corrected the following description.                                                      |
|             |                                                    | • AHB (Max 40MHz) → AHB (Max 42MHz)                                                       |
| 34          |                                                    | • APB0 (Max 40MHz) → APB0 (Max 42MHz)                                                     |
|             |                                                    | • APB1 (Max 40MHz) → APB1 (Max 42MHz)                                                     |
|             |                                                    | • APB2 (Max 40MHz) → APB2 (Max 42MHz) Deleted the description for "USB Clock Ctrl / PLL". |
|             | ■ELECTRICAL CHARACTERISTICS 3. DC Characteristics  | • Revised the value of "TBD".                                                             |
|             | (1) Current Rating                                 | Corrected the value.                                                                      |
|             |                                                    | - Power supply current (I <sub>CCR</sub> )                                                |
| 45, 46      |                                                    | Typ: $60 \rightarrow 50$                                                                  |
|             |                                                    | - Power supply current ( $I_{CCRD}$ ) (RAM hold off)<br>Typ: $45 \rightarrow 30$          |
|             |                                                    | - Power supply current (I <sub>CCRD</sub> ) (RAM hold on)                                 |
|             |                                                    | Typ: $48 \rightarrow 33$                                                                  |
| 61          | (9) External Input Timing                          | Revised the value of "TBD".                                                               |
| 66          | 5. 12-bit A/D Converter                            | • Deleted "(Preliminary value)".                                                          |
|             | • Electrical characteristics for the A/D converter | • Corrected the value of "Compare clock cycle".  Max: 10000 → 2000                        |
| 70          | 7. MainFlash Memory Write/Erase Characteristics    | Deleted"(targeted value)".                                                                |
|             | Erase/write cycles and data hold time              |                                                                                           |
|             | 8. WorkFlash Memory Write/Erase Characteristics    |                                                                                           |
|             | Erase/write cycles and data hold time              |                                                                                           |
| Revision 1. | 1                                                  | 1                                                                                         |
| -           | -                                                  | Company name and layout design change                                                     |







#### Colophon

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for any use that includes fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for any use where chance of failure is intolerable (i.e., submersible repeater and artificial satellite). Please note that Spansion will not be liable to you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products. Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the US Export Administration Regulations or the applicable laws of any other country, the prior authorization by the respective government entity will be required for export of those products.

#### Trademarks and Notice

The contents of this document are subject to change without notice. This document may contain information on a Spansion product under development by Spansion. Spansion reserves the right to change or discontinue work on any product without notice. The information in this document is provided as is without warranty or guarantee of any kind as to its accuracy, completeness, operability, fitness for particular purpose, merchantability, non-infringement of third-party rights, or any other warranty, express, implied, or statutory. Spansion assumes no liability for any damages of any kind arising out of the use of the information in this document.

Copyright © 2012-2014 Spansion Inc. All rights reserved. Spansion®, the Spansion logo, MirrorBit®, MirrorBit® Eclipse<sup>TM</sup>, ORNAND<sup>TM</sup> and combinations thereof, are trademarks and registered trademarks of Spansion LLC in the United States and other countries. Other names used are for informational purposes only and may be trademarks of their respective owners.

# **Mouser Electronics**

**Authorized Distributor** 

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Cypress Semiconductor:

CY9AF112KPMC-G-105-JNE2 CY9AF112KPMC-G-101-JNE1