SN55116, SN75116, SN75117, SN75118, SN75119 DIFFERENTIAL LINE TRANSCEIVERS

SLLS073D - MAY 1976 - REVISED MAY 1998

features common to all types

- Single 5-V Supply
- 3-State Driver Output Circuitry
- TTL-Compatible Driver Inputs
- TTL-Compatible Receiver Output
- Differential Line Operation
- Receiver Output Strobe (SN55116, SN75116, SN75117) or Enable (SN75118, SN75119)
- Designed for Party-Line (Data-Bus) Applications

additional features of the SN55116/SN75116

- Choice of Ceramic or Plastic Packages
- Independent Driver and Receiver
- Choice of Open-Collector or Totem-Pole Outputs on Both Driver and Receiver
- Dual Data Inputs on Driver
- Optional Line-Termination Resistor in Receiver
- ±15-V Receiver Common-Mode Capability
- Receiver Frequency-Response Control

additional features of the SN75117

 Driver Output Internally Connected to Receiver Input

The SN75118 is an SN75116 With 3-State Receiver Output Circuitry The SN75119 is an SN75117 With 3-State Receiver Output Circuitry

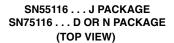
description

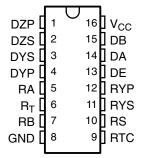
These integrated circuits are designed for use in interfacing between TTL-type digital systems and differential data-transmission lines. They are especially useful for party-line (data-bus) applications. Each of these circuit types combine in one package a 3-state differential line driver and a differential-input line receiver, both of which operate from a single 5-V power supply. The driver inputs and the receiver outputs are TTL compatible. The driver employed is similar to the SN55113 and SN75113 3-state line drivers, and the receiver is similar to the SN55115 and SN75115 line receivers.

The SN55116, SN75116, and SN75118 offer all the features of the SN55113 and SN75113 drivers and the SN55115 and SN75115 receivers combined. The driver performs the dual input AND and NAND functions when enabled or presents a high impedance to the load when in the disabled state. The driver output stages are similar to TTL totem-pole outputs, but have the current-sinking portion separated from the current-sourcing portion and both are brought out to adjacent package terminals. This feature allows the user the option of using the driver in the open-collector output configuration, or, by connecting the adjacent source and sink terminals together, of using the driver in the normal totem-pole output configuration.

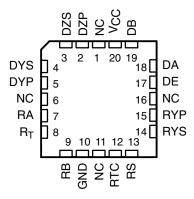
The receiver portion of the SN55116, SN75116, and SN75118 features a differential-input circuit having a common-mode voltage range of ± 15 V. An internal 130- Ω equivalent resistor also is provided, which optionally can be used to terminate the transmission line. A frequency-response control terminal allows the user to reduce the speed of the receiver or to improve differential noise immunity. The receivers of the SN55116 and SN75116 have an output strobe and a split totem-pole output. The receiver of the SN75118 has an output-enable for the 3-state split totem-pole output. The receiver section of either circuit is independent of the driver section except for the V_{CC} and ground terminals.

The SN75117 and SN75119 provide the basic driver and receiver functions of the SN55116, SN75116, and SN75118, but use a package that is only half as large. The SN75117 and SN75119 are intended primarily for party-line or bus-organized systems because the driver outputs are internally connected to the receiver inputs. The driver has a single data input and a single enable input. The SN75117 receiver has an output strobe, while the SN75119 receiver has a 3-state output enable. However, these devices do not provide output connection options, line-termination resistors, or receiver frequency-response controls.


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.



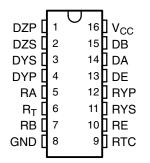
SLLS073D - MAY 1976 - REVISED MAY 1998


description (continued)

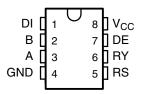
The SN55116 is characterized for operation over the full military temperature range of –55°C to 125°C. The SN75116, SN75117, SN75118, and SN75119 are characterized for operation from 0°C to 70°C.

SN55116 . . . FK PACKAGE (TOP VIEW)

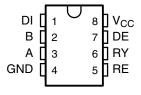
NC - No internal connection


'116, SN75118 DRIVER

11	NPUTS	OUTPUTS				
DE	DA	DB	DY	DZ		
L	Х	Х	Z	Z		
Н	L	Χ	L	Н		
Н	X	L	L	Н		
Н	Н	Н	Н	L		


'116, SN75118 RECEIVER

RS/RE	DIFF	OUTPUTS RY					
NO/NE	INPUT	'116	SN75118				
L	Χ	Н	Z				
Н	L	Н	Н				
Ιн	Н	lι	L				


SN75118 . . . D OR N PACKAGE (TOP VIEW)

SN75117 . . . D OR P PACKAGE (TOP VIEW)

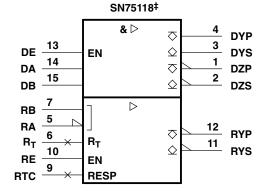
SN75119...D OR P PACKAGE (TOP VIEW)

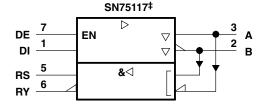
Function Tables

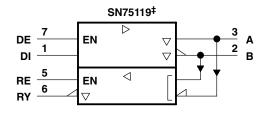
SN75117, SN75119 DRIVER

INP	UTS	OUTPUTS				
DI	DE	Α	В			
Н	Н	Н	L			
L	Н	L	Н			
Х	L	Z	Z			

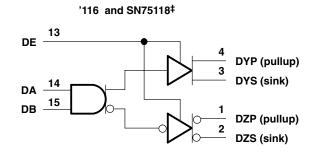
SN75117, SN75119 RECEIVER

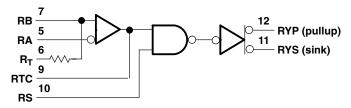

	INPU	TS	OUTPUT RY					
Α	В	RS/RE	SN75117	SN75119				
Н	L	Н	Н	Н				
L	Н	Н	L	L				
Χ	Χ	L	Н	Z				

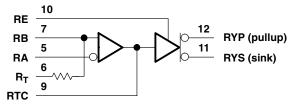

 $H = high level (V_l \ge V_{lH} min or V_{lD} more positive than V_{TH} max), L = low level (V_l \le V_{lL} max or V_{lD} more negative than V_{TL} max), X = irrelevant, Z = high impedance (off)$

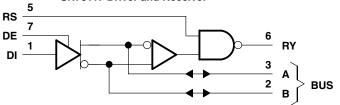


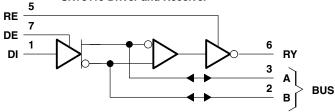
logic symbol[†]


'116[‡] & ⊳ DYP \Diamond 3 13 \Diamond DE ΕN DYS 1 14 DA \Diamond DZP 15 2 DB \Diamond DZS \triangleright &⊳ RB 5 RA 12 RYP \Diamond 6 \mathbf{R}_{T} \mathbf{R}_{T} 11 RYS \Diamond 10 RS RTC RESP



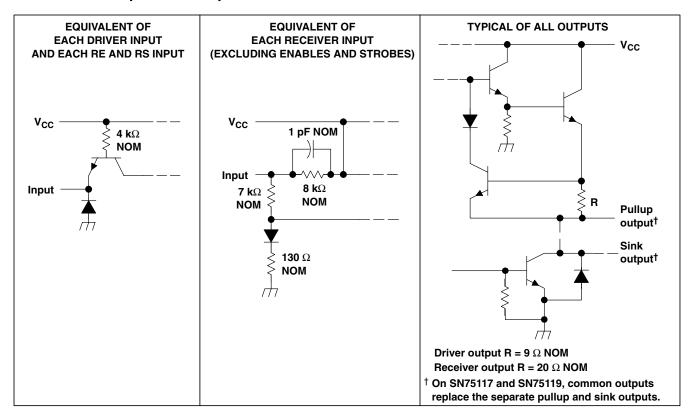

logic diagram (positive logic)


'116 Receiver‡


SN75118 Receiver[‡]

SN75117 Driver and Receiver‡

SN75119 Driver and Receiver‡



[†] These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

[‡] Pin numbers shown for the SN55116 and SN75116 are for the D, J, and N packages, those shown for the SN75118 are for the D and N packages, and those shown for SN75117 and SN75119 are for the D and P packages.

SLLS073D - MAY 1976 - REVISED MAY 1998

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature (unless otherwise noted)‡

Supply voltage, V _{CC} (see Notes 1 and 2)	7 V
Input voltage, V _I : DA, DB, DE, DI, RE, and RS	5.5 V
RA, RB, R _T for '116, SN75118 only	±25 V
A and B for SN75117, SN75119 only	0 to 6 V
Off-state voltage applied to open-collector outputs: '116, SN75118 only	12 V
Continuous total power dissipation (see Note 2)	See Dissipation Rating Table
Storage temperature range, T _{stq}	–65°C to 150°C
Case temperature for 60 seconds, T _C : FK package	260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package	300°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D, N, or P pack	kage 260°C

[‡] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltage values are with respect to the network ground terminal.
 - 2. In the FK and J packages, the SN55116 chip is alloy mounted. The SN75116, SN75117, SN75118, and SN75119 chips are glass mounted.

SN55116, SN75116, SN75117, SN75118, SN75119 DIFFERENTIAL LINE TRANSCEIVERS

SLLS073D - MAY 1976 - REVISED MAY 1998

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 125°C POWER RATING
D (8 pin)	725 mW	5.8 mW/°C	464 mW	
D (16 pin)	950 mW	7.6 mW/°C	608 mW	_
FK	1375 mW	11.0 mW/°C	880 mW	275 mW
J	1375 mW	11.0 mW/°C	880 mW	275 mW
N	1150 mW	9.2 mW/°C	736 mW	_
Р	1000 mW	8.0 mW/°C	640 mW	_

recommended operating conditions

PARAMETER		9	SN55116		SN751 SN75	UNIT		
		MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V _{CC}		4.5	5	5.5	4.5	5	5.5	٧
High-level input voltage, V _{IH}	All inputs except differential	2			2			V
Low-level input voltage, V _{IL}	inputs			0.8			0.8	V
High lavel autout august 1	Drivers			-40			-40	A
High-level output current, I _{OH}	Receivers			-5			-5	mA
Landard and a decidence of	Drivers			40			40	
Low-level output current, I _{OL}	Receivers			15			15	mA
B	'116, SN75118			±15			±15	
Receiver input voltage, V _I	SN75117, SN75119	0		6	0		6	V
O	'116, SN75118			±15			±15	.,
Common-mode receiver input voltage, V _{ICR}	SN75117, SN75119	0		6	0		6	V
Operating free-air temperature, T _A		-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

driver section

	DADAMETED			TEST SOMBITIONS!		'116	, SN751	18	SN75117, SN75119			LINUT
	PARAMETER			TEST CONDITIONS†		MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
V _{IK}	Input clamp voltage		$V_{CC} = MIN,$	I _I = -12 mA			-0.9	-1.5		-0.9	-1.5	V
				$T_A = 25^{\circ}C \text{ (SN55116)},$ $T_A = 0^{\circ}C \text{ to } 70^{\circ}C$	$I_{OH} = -10 \text{ mA}$	2.4	3.4		2.4	3.4		
V _{OH}	High-level output voltage		$V_{CC} = MIN,$ $V_{IL} = 0.8 V,$	(SN75116, SN75117, SN75118, SN75119)	$I_{OH} = -40 \text{ mA}$	2	3		2	3		V
			I _{IH} = 2 V	$T_A = -55^{\circ}C \text{ to } 125^{\circ}C$	$I_{OH} = -10 \text{ mA}$	2			2			
				(SN55116)	$I_{OH} = -40 \text{ mA}$	1.8			1.8			
V_{OL}	Low-level output voltage		$V_{CC} = MIN,$	$V_{IH} = 2 V,$ $V_{IL} = 0.8 V,$			0.4			0.4	V	
V_{OK}	Output clamp voltage		$V_{CC} = MAX$,	$I_O = -40 \text{ mA}, \qquad DE \text{ at } 0.8 \text{ V}$			-1.5			-1.5	V	
				T _A = 25°C			1	10				
I _{O(off)}	Off-state open-collector output current		1.00		SN55116			200				μΑ
·O(oii)			V _O = 12 V	$T_A = MAX$	SN75116, SN75118		20					μιτ
			$V_{CC} = MAX$,	$V_O = 0$ to V_{CC} , DE at 0.8 V,	T _A = 25°C			±10				
	Off state /high impadance	atata\	V 144V	$V_0 = 0$	SN55116			-300				
I_{OZ}	Off-state (high-impedance- output current	-state)	V _{CC} = MAX, DE at 0.8 V,	$V_O = 0.4 \text{ V to } V_{CC}$	SN55116			±150				μΑ
	·		$T_A = MAX$	$V_{O} = 0$ to V_{CC}	SN75116, SN75118			±20				
I _I	Input current at maximum input voltage	Driver or	V _{CC} = MAX,	V _I = 5.5 V				1			1	mA
I _{IH}	High-level input current	enable input	$V_{CC} = MAX$,	V _I = 2.4 V				40			40	μΑ
I _{IL}	Low-level input current	1	$V_{CC} = MAX$,	V _I = 0.4 V				-1.6			-1.6	mA
Ios	Short-circuit output current	§	$V_{CC} = MAX$,	$V_{O} = 0,$ $T_{A} = 25^{\circ}C$		-40		-120	-40		-120	mA
I _{CC}	Supply current (driver and combined)	receiver	V _{CC} = MAX,	T _A = 25°C			42	60	42		60	mA
<u> </u>												<u> </u>

[†] All parameters with the exception of off-state open-collector output current are measured with the active pullup connected to the sink output. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡] All typical values are at V_{CC} = 5 V and T_A = 25°C. § Not more than one output should be shorted at a time, and duration of the short circuit should not exceed one second.

SN55116, SN75116, SN75117, SN75118, SN75119 DIFFERENTIAL LINE TRANSCEIVERS

SLLS073D - MAY 1976 - REVISED MAY 1998

switching characteristics, V_{CC} = 5 V, C_L = 30 pF, T_A = 25 $^{\circ}C$

driver section

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation-delay time, low-to-high level output	0 5: 40		14	30	
t_{PHL}	Propagation-delay time, high-to-low level output	See Figure 13		12	30	ns
t_{PZH}	Output-enable time to high level	$R_L = 180 \Omega$, See Figure 14		8	20	ns
t_{PZL}	Output-enable time to low level	$R_L = 250 \Omega$, See Figure 15		17	40	ns
t _{PHZ}	Output-disable time from high level	$R_L = 180 \Omega$, See Figure 14		16	30	ns
t_{PLZ}	Output-disable time from low level	$R_L = 250 \Omega$, See Figure 15		20	35	ns

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

receiver section

	24244555			TEOT COMP	ITIONO†	'116	6, SN751	18	SN75117, SN75119			UNIT	
	PARAMETER			TEST COND	ITIONS	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT	
,	Desiring a second translation	8	V _O = 0.4 V,	I _{OL} = 15 mA,	V _{CC} = MIN, V _{ICR} = 0, See Note 4			0.5			0.5	V	
V _{IT+}	Positive-going threshold vol	tages	See Note 3		$V_{CC} = 5 \text{ V}, V_{ICR} = \text{MAX},$ See Note 5			1			1		
V _{IT} Negative-going threshold voltage§	alta a a §	V _O = 2.4 V,	$I_{OL} = -5 \text{ mA},$	V _{CC} = MIN, V _{ICR} = 0, See Note 4	-0.5¶			-0.5¶			V		
V -	VII - Negative-going threshold voltag	ладе	See Note 3		V _{CC} = 5 V, V _{ICR} = MAX, See Note 5	-1¶			_1¶			V	
Vi	Input voltage range#		V _{CC} = 5 V,	$V_{ID} = -1 \text{ V or } 1 \text{ V},$	See Note 3	15 to –15			6 to 0			V	
.,			I _{OH} = -5 mA,	$V_{CC} = MIN,$ $V_{ICR} = 0,$	$V_{ID} = -0.5 \text{ V},$ See Notes 4 and 6	2.4			2.4			V	
V _{OH}	High-level output voltage		See Note 3	$V_{CC} = 5 \text{ V},$ $V_{ICR} = \text{MAX},$	$V_{ID} = -1 V$, See Note 5	2.4			2.4			V	
Val	Low-level output voltage		I _{OL} = 15 mA,	$V_{CC} = MIN,$ $V_{ICR} = 0,$	V _{ID} = 0.5 V, See Notes 4 and 7			0.4			0.4	v	
V _{OL}	Low-level output voltage		See Note 3	$V_{CC} = 5 \text{ V},$ $V_{ICR} = \text{MAX},$	V _{ID} = 1 V, See Note 5			0.4		0.4		V	
				$V_I = 0$,	Other input at 0 V		-0.5	-0.9		-0.5	-1		
I _{I(rec)}	Receiver input current		V _{CC} = MAX, See Note 3	$V_1 = 0.4 V$,	Other input at 2.4 V		-0.4	-0.7		-0.4	-0.8	mA	
			300 14010 0	V _I = 2.4 V,	Other input at 0.4 V		0.1	0.3		0.1	0.4		
l ₁	Input current at maximum	Strobe	$V_{CC} = MIN,$ $V_{strobe} = 4.5 V$	$V_{ID} = -0.5 \text{ V},$	'116, SN75117			5			5	μА	
	input voltage	Enable	$V_{CC} = MAX$,	V _I = 5.5 V	SN75118, SN75119			1			1	mA	

[†] Unless otherwise noted, V_{strobe} = 2.4 V. All parameters, with the exception of off-state open-collector output current, are measured with the active pullup connected to the sink output. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTES: 3. Measurement of these characteristics on the SN75117 and SN75119 requires the driver to be disabled with the driver enable at 0.8 V.

- 4. This applies with the less positive receiver input grounded.
- 5. For '116 and SN75118, this applies with the more positive receiver input at 15 V or the more negative receiver input at 15 V. For SN75117 and SN75119, this applies with the more positive receiver input at 6 V.
- 6. For SN55116, $V_{ID} = -1 \text{ V}$
- 7. For SN55116, $V_{ID} = 1 \text{ V}$

[‡] All typical values are at $V_{CC} = 5$ V, $T_A = 25$ °C, and $V_{IC} = 0$.

[§] Differential voltages are at the B input terminal with respect to the A input terminal. Neither receiver input of the SN75117 or SN75119 should be taken negative with respect to GND.

¹ The algebraic convention, where the less positive (more negative) limit is designated as minimum, is used in this data sheet for threshold voltages only.

[#] Input voltage range is the voltage range that, if exceeded at either input, will cause the receiver to cease functioning properly.

receiver section (continued)

	DADAMETED			TEGT COMPLETION	ot	'116	6, SN751	118	SN75117, SN75119			
	PARAMETER			TEST CONDITION	51	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
I _{IH}	High-level input current	Enable	$V_{CC} = MAX$,	V _I = 2.4 V	SN75118, SN75119			40			40	μΑ
I _i	Low-level input current		$V_{CC} = MAX,$ $V_{strobe} = 0.4 V,$	V _{ID} = 0.5 V, See Notes 4 and 7	'116, SN75117			-2.4			-2.4	mA
		Enable	$V_{CC} = MAX$,	$V_{I} = 0.4 \text{ V}$	SN75118, SN75119			-1.6			-1.6	
I _(RTC)	Response-time-control curre	ent (RTC)	V _{CC} = MAX, RC at 0 V,	V _{ID} = 0.5 V, See Notes 4 and 7	T _A = 25°C	-1.2						mA
			V _{CC} = MAX,	T _A = 25°C			1	10				
I _{O(off)}	Off-state open-collector outp	out current	V _O = 12 V,	SN55116			200				μΑ	
			$V_{ID} = -1 V$	$T_A = MAX$	SN75116, SN75118			20				
	0" "		V _{CC} = MAX,	T _A = 25°C	SN75118, SN75119			±10			±10	
loz	Off-state (high-impedance-s output current	tate)	$V_O = 0$ to V_{CC} ,	T MAN	SN75118			±20				μА
	output ourrent		RE at 0.4 V	$T_A = MAX$	SN75119						±20	
R _T	Line-terminating resistance		V _{CC} = 5 V		$T_A = 25^{\circ}C$	77		167				Ω
I _{OS}	Short-circuit output current§		$V_{CC} = MAX,$ $V_{ID} = -0.5 V,$	V _O = 0, See Notes 4 and 6	T _A = 25°C	-15		-80	-15		-80	mA
I _{CC}	Short current (driver and receiver combined)		V _{CC} = MAX, See Notes 4 and	V _{ID} = 0.5 V, 7	T _A = 25°C		42	60		42	60	mA

[†] Unless otherwise noted, V_{strobe} = 2.4 V. All parameters, with the exception of off-state open-collector output current, are measured with the active pullup connected to the sink output. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

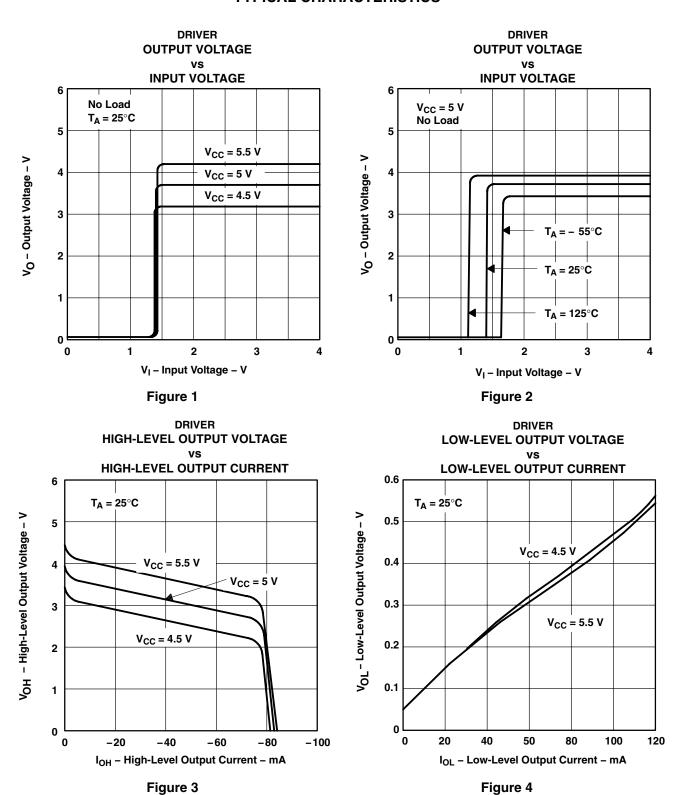
NOTES: 4. This applies with the less positive receiver input grounded.

- For SN55116, V_{ID} = -1 V
 For SN55116, V_{ID} = 1 V

SN55116, SN75116, SN75117, SN75118, SN75119
DIFFERENTIAL LINE TRANSCEIVERS

 $^{^{\}ddagger}$ All typical values are at V_{CC} = 5 V, T_A = 25°C, and V_{IC} = 0. § Not more than one output should be shorted at a time.

SN55116, SN75116, SN75117, SN75118, SN75119 DIFFERENTIAL LINE TRANSCEIVERS

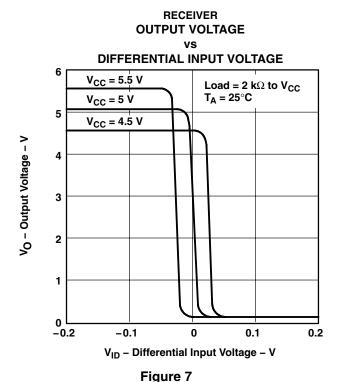

SLLS073D - MAY 1976 - REVISED MAY 1998

switching characteristics, V_{CC} = 5 V, C_L = 30 pF, T_A = 25 $^{\circ}C$

receiver section

	PARAMETER		TEST C	MIN	TYP	MAX	UNIT	
t _{PLH}	Propagation-delay time, low-to-high-level output	B 400 O	0 Firm 10		20	75	ns	
t _{PHL}	Propagation-delay time, high-to-low-level output	ıt	$R_L = 400 \Omega$	See Figure 16		17	75	ns
t_{PZH}	Output-enable time to high level	SN75118	$R_L = 480 \Omega$,	See Figure 14		9	20	ns
t_{PZL}	Output-enable time to low level	and	$R_L = 250 \Omega$,	See Figure 15		16	35	ns
t_{PHZ}	Output-disable time from high level	SN75119	$R_L = 480 \Omega$,	See Figure 14		12	30	ns
t_{PLZ}	Output-disable time from low level	only	$R_L = 250 \Omega$,	See Figure 15		17	35	ns

TYPICAL CHARACTERISTICS[†]



[†] Operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied.

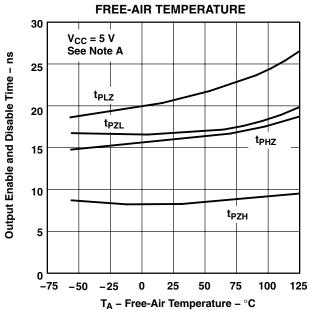

TYPICAL CHARACTERISTICS†

Figure 5

DRIVER
OUTPUT-ENABLE AND DISABLE TIME
vs

NOTE A: For t_{PZH} and t_{PHZ} : $R_L = 480 \ \Omega$, see Figure 14. For t_{PZL} and t_{PLZ} : $R_L = 250 \ \Omega$, see Figure 15.

Figure 6

RECEIVER OUTPUT VOLTAGE vs DIFFERENTIAL INPUT VOLTAGE

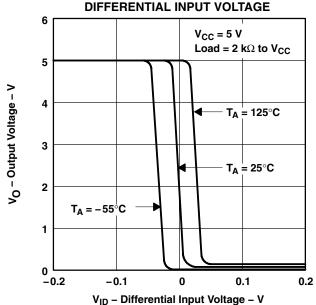
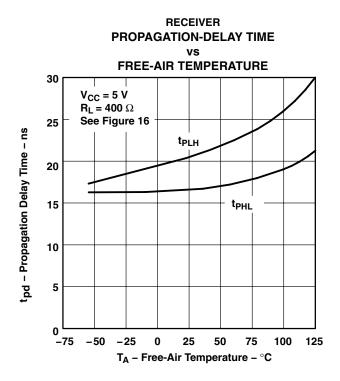
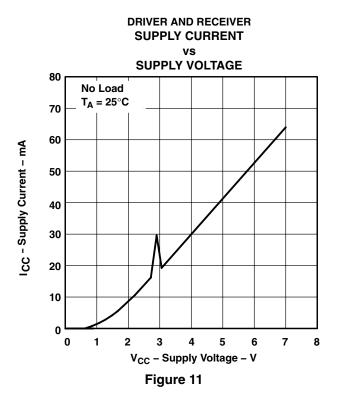
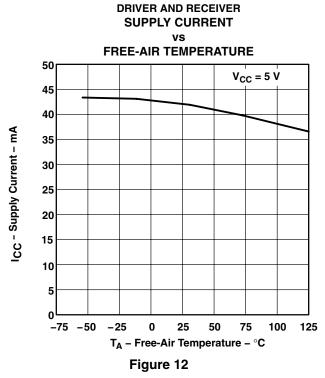



Figure 8

[†] Operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied.

TYPICAL CHARACTERISTICS†

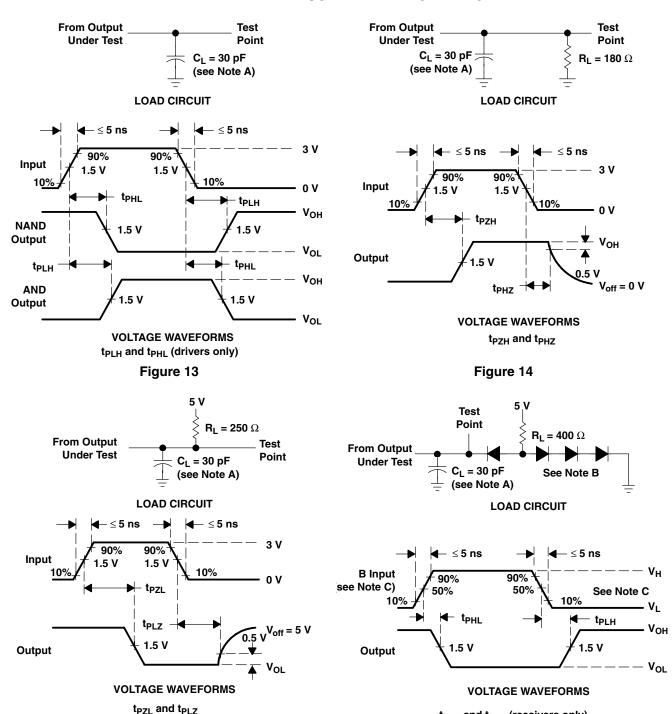



RECEIVER OUTPUT-ENABLE AND DISABLE TIME FREE-AIR TEMPERATURE 30 $V_{CC} = 5 V$ See Note A Output Enable and Disable Time - ns 25 t_{PLZ} 20 t_{PZL} 15 t_{PHZ} 10 t_{PZH} 5 0 -75 -50 -25 0 25 50 75 100 125 T_A - Free-Air Temperature - °C

NOTE A: For t_{PZH} and t_{PHZ} : R_L = 480 Ω , see Figure 14. For t_{PZL} and t_{PLZ} : R_L = 250 Ω , see Figure 15.

Figure 10

Figure 9



[†] Operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied.

t_{PLH} and t_{PHL} (receivers only)

Figure 16

PARAMETER MEASUREMENT INFORMATION

- NOTES: A. C_I includes probe and jig capacitance.
 - B. All diodes are 1N3064 or equivalent.

(SN75118 and SN75119 receivers only) Figure 15

- C. For '116 and SN75118, $V_H=3$ V, $V_L=-3$ V, the A input is at 0 V. For SN75117 and SN75119, $V_H=3$ V, $V_L=0$, the A input is at 1.5 V.
- D. When testing the '116 and SN75118 receiver sections, the response-time control and the termination resistor pins are left open.

24-Aug-2018

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
5962-88511012A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	5962- 88511012A SNJ55 116FK	Samples
5962-8851101EA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-8851101EA SNJ55116J	Samples
SN75116D	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	SN75116	Samples
SN75116N	ACTIVE	PDIP	N	16	25	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN75116N	Samples
SN75116NSR	ACTIVE	so	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	SN75116	Samples
SN75117P	ACTIVE	PDIP	Р	8	50	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN75117P	Samples
SN75118N	ACTIVE	PDIP	N	16	25	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN75118N	Samples
SN75119D	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	0 to 70	75119	Samples
SN75119P	ACTIVE	PDIP	Р	8	50	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN75119P	Samples
SNJ55116FK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	5962- 88511012A SNJ55 116FK	Samples
SNJ55116J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-8851101EA SNJ55116J	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

PACKAGE OPTION ADDENDUM

24-Aug-2018

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

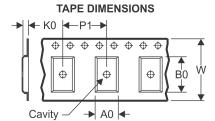
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN55116. SN75116:

Catalog: SN75116

Military: SN55116

NOTE: Qualified Version Definitions:

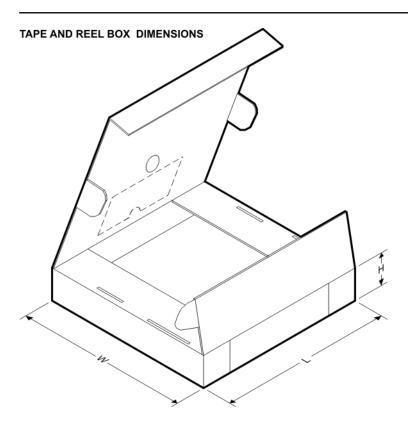

- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications

PACKAGE MATERIALS INFORMATION

www.ti.com 18-Aug-2014

TAPE AND REEL INFORMATION

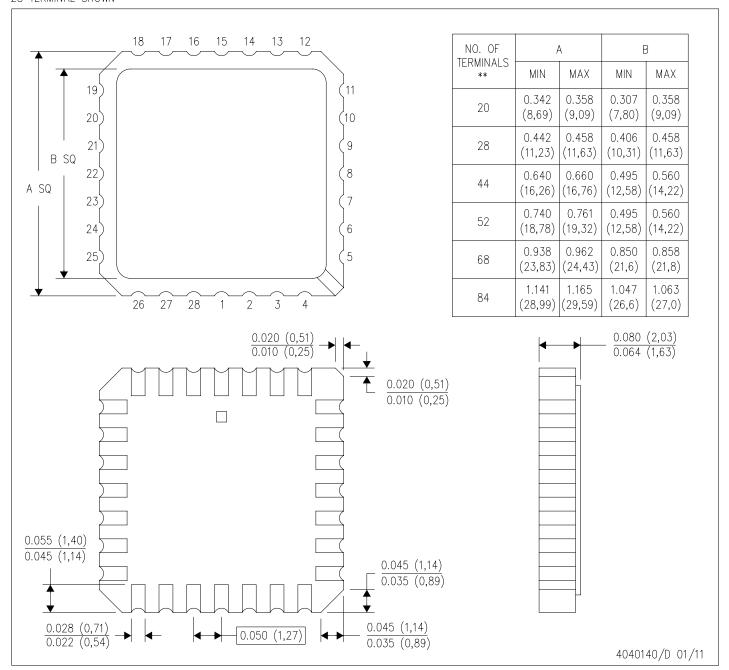
	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN75116NSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1

www.ti.com 18-Aug-2014

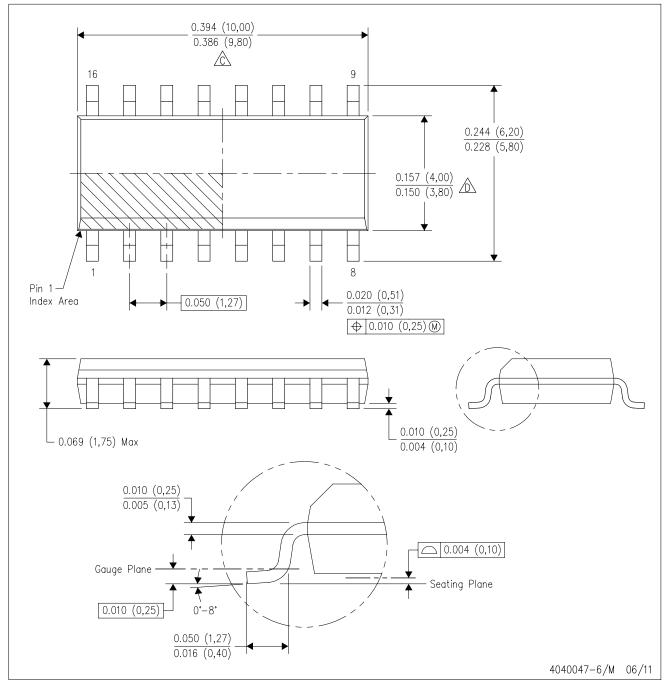

*All dimensions are nominal

ĺ	Device	Device Package Type		Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
	SN75116NSR	SO	NS	16	2000	367.0	367.0	38.0	

FK (S-CQCC-N**)

LEADLESS CERAMIC CHIP CARRIER

28 TERMINAL SHOWN



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. Falls within JEDEC MS-004

D (R-PDS0-G16)

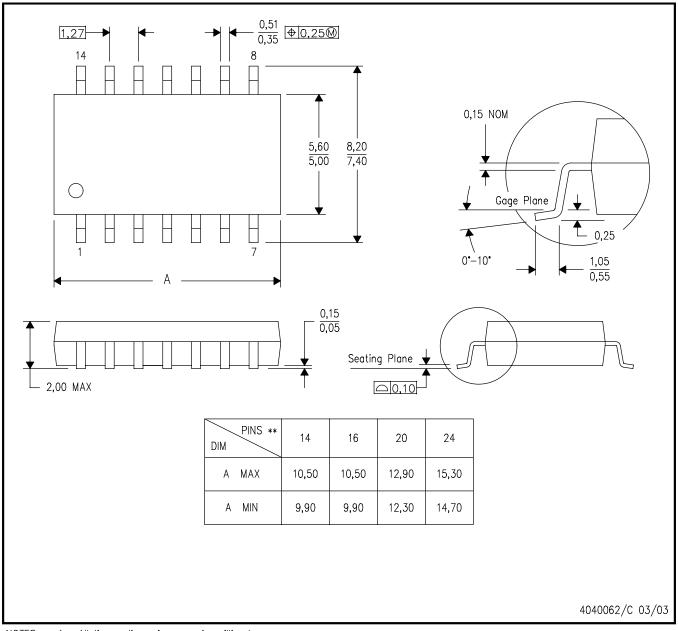
PLASTIC SMALL OUTLINE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

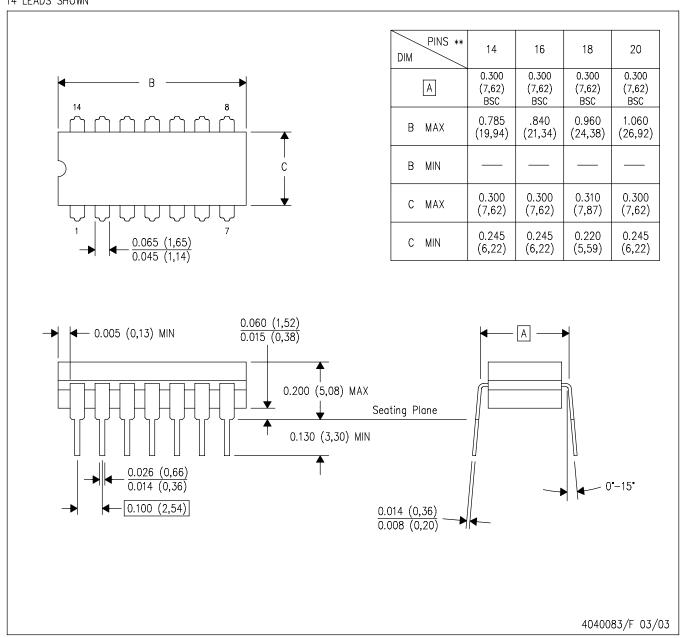
- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.



MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN


PLASTIC SMALL-OUTLINE PACKAGE

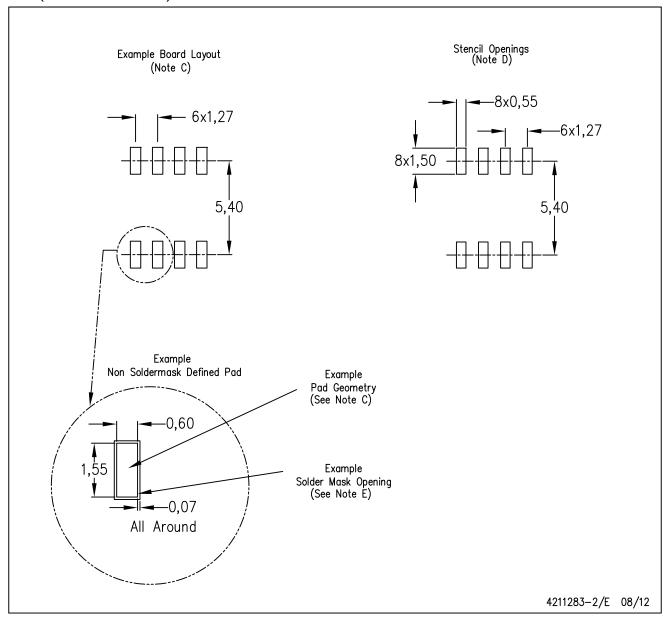
- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

14 LEADS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

D (R-PDSO-G8)

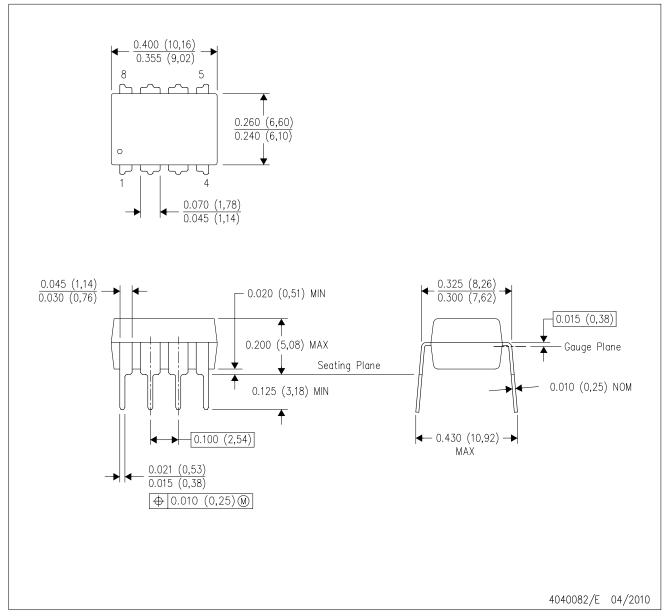
PLASTIC SMALL OUTLINE



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

P (R-PDIP-T8)

PLASTIC DUAL-IN-LINE PACKAGE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 variation BA.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Texas Instruments:

SN75116NSR SN75116N SN75116D SN75116DR SN75116DRE4 SN75116NE4 SN75116DRG4