

N-channel 30 V, 0.0072 Ω typ., 48 A STripFET™ V Power MOSFET in a DPAK package

Datasheet - not recommended for new design

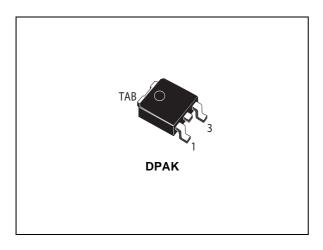
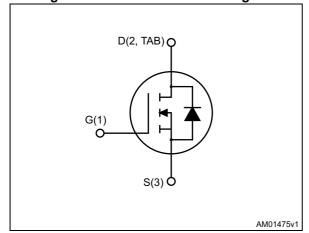



Figure 1. Internal schematic diagram

Features

Order code	V _{DS @ Tjmax}	R _{DS(on)} max	I _D
STD60N3LH5	35 V	0.008 Ω	48 A

- R_{DS(on)} * Q_g industry benchmark
- Extremely low on-resistance R_{DS(on)}
- · Very low switching gate charge
- High avalanche ruggedness
- Low gate drive power losses

Applications

· Switching applications

Description

This device is an N-channel Power MOSFET developed using STMicroelectronics' STripFET™V technology. The device has been optimized to achieve very low on-state resistance, contributing to a FOM that is among the best in its class.

Table 1. Device summary

Order code	Marking	Packages	Packaging
STD60N3LH5	60N3LH5	DPAK	Tape and reel

Contents STD60N3LH5

Contents

1	Electrical ratings	3
2	Electrical characteristics	4
	2.1 Electrical characteristics (curves)	6
3	Test circuits	8
4	Package mechanical data1	10
5	Revision history	14

STD60N3LH5 Electrical ratings

1 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	30	V
V _{DS}	Drain-source voltage @ T _{jmax}	35	V
V _{GS}	Gate-source voltage	± 20	V
I _D ⁽¹⁾	Drain current (continuous) at T _C = 25 °C	48	Α
I _D	Drain current (continuous) at T _C = 100 °C	42.8	А
I _{DM} ⁽²⁾	Drain current (pulsed)	192	А
P _{TOT}	Total dissipation at T _C = 25 °C	60	W
	Derating factor	0.4	W/°C
E _{AS} (3)	Single pulse avalanche energy	160	mJ
T _j T _{stg}	Operating junction temperature Storage temperature	-55 to 175	°C

^{1.} Limited by wire bonding.

Table 3. Thermal resistance

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case max.	2.5	°C/W
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb max.	50	°C/W

^{1.} When mounted on FR-4 board of 1inch², 2oz Cu

^{2.} Pulse width limited by safe operating area.

^{3.} Starting T_j = 25 °C, I_D = 24 A, V_{DD} = 12 V.

Electrical characteristics STD60N3LH5

2 Electrical characteristics

(T_{CASE} = 25 °C unless otherwise specified)

Table 4. Static

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0$	30			V
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V _{DS} = 30 V V _{DS} = 30 V, T _C = 125 °C			1 10	μA μA
I _{GSS}	Gate body leakage current (V _{DS} = 0)	V _{GS} = ± 20 V			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	1	1.8	3	V
Page	Static drain-source	V _{GS} = 10 V, I _D = 24 A		0.0072	0.008	Ω
R _{DS(on)}	on-resistance	V_{GS} = 5 V, I_D = 24 A		0.0088	0.011	Ω

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	1350	1620	pF
C _{oss}	Output capacitance	V _{DS} =25 V, f=1 MHz,	-	265	318	pF
C _{rss}	Reverse transfer capacitance	V _{GS} =0	-	32	38	pF
Qg	Total gate charge	V _{DD} =15 V, I _D = 48 A	-	8.8	12.3	nC
Q _{gs}	Gate-source charge	V _{GS} =5 V (Figure 14)	-	4.7	6.6	nC
Q _{gd}	Gate-drain charge		-	2.2	3.1	nC
Q _{gs1}	Pre V _{th} gate-to-source charge	V _{DD} =15 V, I _D = 48 A	-	2.2	3.1	nC
Q _{gs2}	Post V _{th} gate-to-source charge	V _{GS} =5 V (Figure 19)	-	2.5	3.5	nC
R_{G}	Gate input resistance	f = 1 MHz, gate DC Bias = 0, test signal level = 20 mV, I _D = 0	-	1.1	1.3	Ω

Table 6. Switching on/off (resistive load)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	V _{DD} =10 V, I _D = 24 A,	-	6	-	ns
t _r	Rise time	$R_{G}=4.7 \Omega, V_{GS}=10 V$	-	33	-	ns
t _{d(off)}	Turn-off delay time	(Figure 13 and	-	19	-	ns
t _f	Fall time	Figure 18)	-	4.2	-	ns

Table 7. Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		48	Α
I _{SDM}	Source-drain current (pulsed) ⁽¹⁾		-		192	Α
V _{SD}	Forward on voltage I _{SD} =24 A, V _{GS} =0		-		1.1	V
t _{rr}	Reverse recovery time	I _{SD} =48 A,	-	25		ns
Q _{rr}	Reverse recovery charge	di/dt =100 A/µs,	-	18.5		nC
I _{RRM}	Reverse recovery current	V _{DD} =20 V, <i>(Figure 15)</i>	-	1.5		Α

^{1.} Pulsed: pulse duration = 300µs, duty cycle 1.5%

Electrical characteristics STD60N3LH5

2.1 Electrical characteristics (curves)

Figure 2. Safe operating area

Figure 3. Thermal impedance

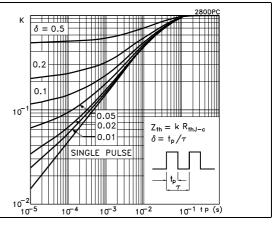


Figure 4. Output characteristics

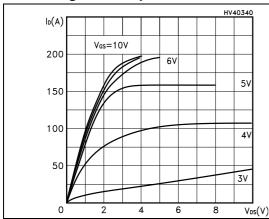


Figure 5. Transfer characteristics

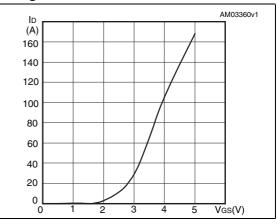


Figure 6. Normalized $V_{(BR)DSS}$ vs temperature

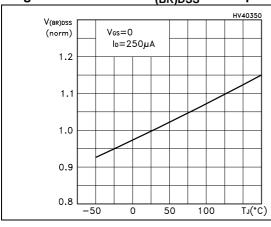
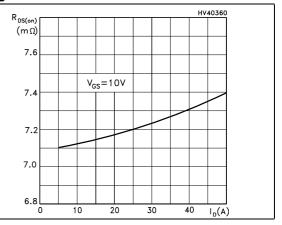



Figure 7. Static drain-source on-resistance

6/19 DocID14079 Rev 5

Figure 8. Gate charge vs gate-source voltage

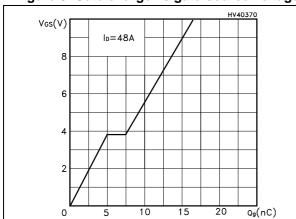


Figure 9. Capacitance variations

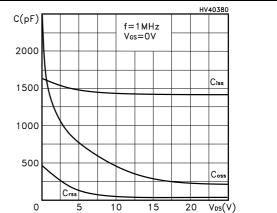
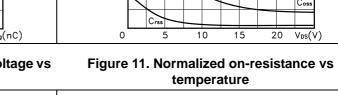
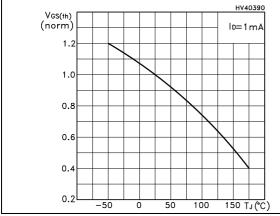




Figure 10. Normalized gate threshold voltage vs temperature

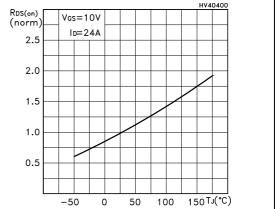
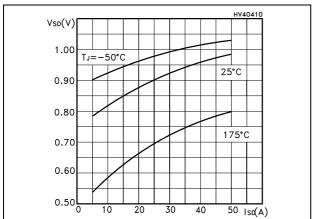



Figure 12. Source-drain diode forward characteristics

Test circuits STD60N3LH5

3 Test circuits

Figure 13. Switching times test circuit for resistive load

Figure 14. Gate charge test circuit

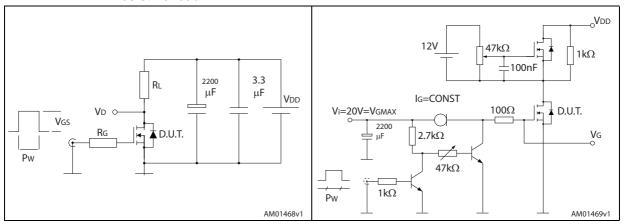
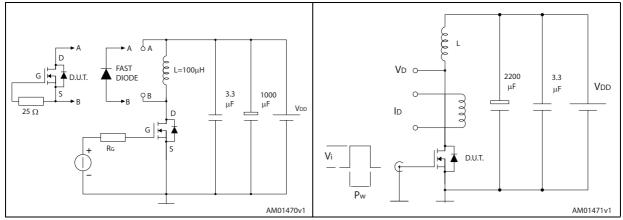
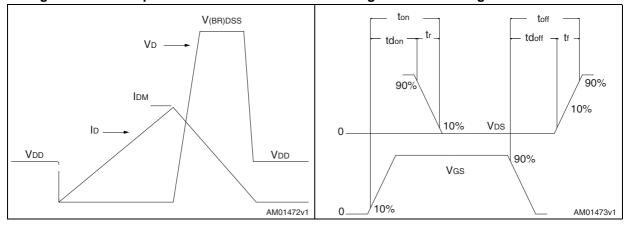


Figure 15. Test circuit for inductive load switching and diode recovery times

Figure 16. Unclamped inductive load test circuit

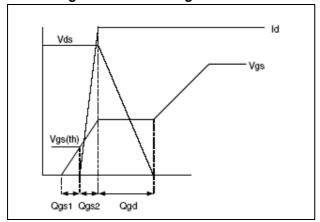

Figure 17. Unclamped inductive waveform

Figure 18. Switching time waveform

STD60N3LH5 Test circuits

Figure 19. Gate charge waveform

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

Table 8. DPAK (TO-252) type A mechanical data

D: .		mm	
Dim.	Min.	Тур.	Max.
Α	2.20		2.40
A1	0.90		1.10
A2	0.03		0.23
b	0.64		0.90
b4	5.20		5.40
С	0.45		0.60
c2	0.48		0.60
D	6.00		6.20
D1		5.10	
Е	6.40		6.60
E1		4.70	
е		2.28	
e1	4.40		4.60
Н	9.35		10.10
L	1.00		1.50
(L1)		2.80	
L2		0.80	
L4	0.60		1.00
R		0.20	
V2	0°		8°

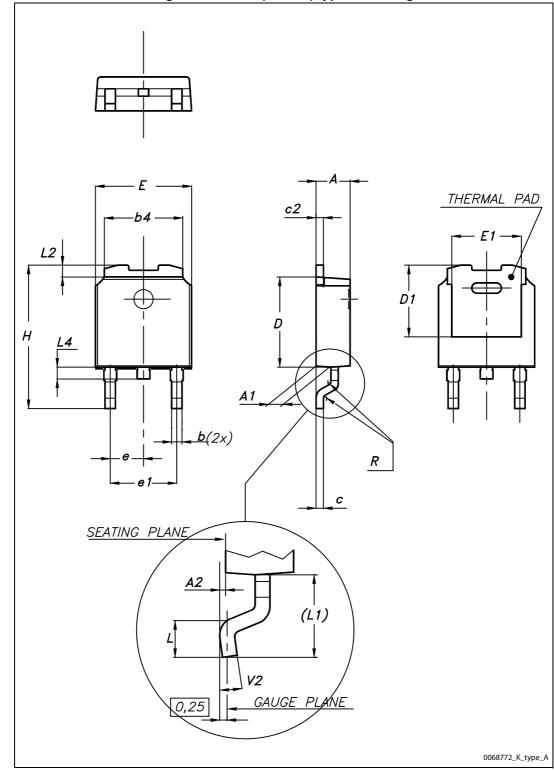


Figure 20. DPAK (TO-252) type A drawing

577

Table 9. DPAK (TO-252) type E mechanical data

Dim		mm				
Dim.	Min.	Тур.	Max.			
Α	2.18		2.39			
A2			0.13			
b	0.65		0.884			
b4	4.95		5.46			
С	0.46		0.61			
c2	0.46		0.60			
D	5.97		6.22			
D1	5.21					
E	6.35		6.73			
E1	4.32					
е		2.286				
e1		4.572				
Н	9.94		10.34			
L	1.50		1.78			
L1		2.74				
L2	0.89		1.27			
L4			1.02			

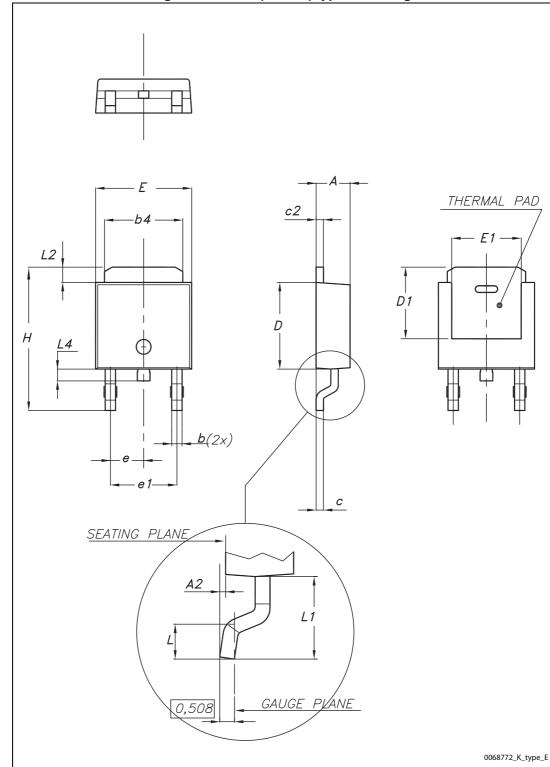


Figure 21. DPAK (TO-252) type E drawing

57/

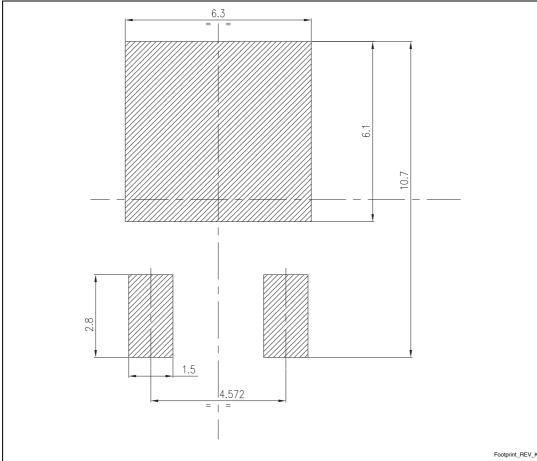


Figure 22. DPAK footprint (a)

a. All dimensions are in millimeters

5 Packaging mechanical data

Table 10. DPAK (TO-252) tape and reel mechanical data

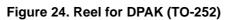
Таре				Reel		
Dim.	mm		Dim.	mm		
Dilli.	Min.	Max.	— Dilli.	Min.	Max.	
A0	6.8	7	А		330	
В0	10.4	10.6	В	1.5		
B1		12.1	С	12.8	13.2	
D	1.5	1.6	D	20.2		
D1	1.5		G	16.4	18.4	
Е	1.65	1.85	N	50		
F	7.4	7.6	Т		22.4	
K0	2.55	2.75				
P0	3.9	4.1		Base qty.	2500	
P1	7.9	8.1		Bulk qty.	2500	
P2	1.9	2.1				
R	40					
Т	0.25	0.35				
W	15.7	16.3				

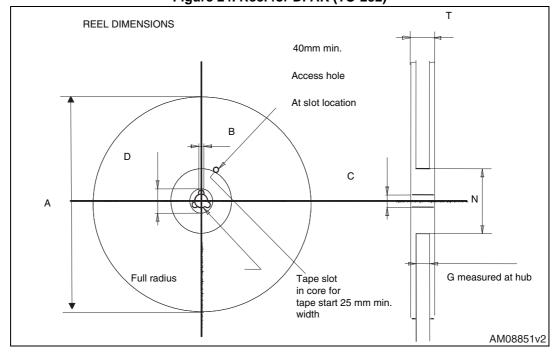
16/19 DocID14079 Rev 5

Top cover tape +/- 0.2 mm

Top cover tape

For machine ref. only including draft and radii concentric around B0


User direction of feed


Light direction of feed

Bending radius

AM08852v1

Figure 23. Tape for DPAK (TO-252)

Revision history STD60N3LH5

6 Revision history

Table 11. Document revision history

Date	Revision	Changes
19-Oct-2007	1	First release
23-Sep-2008	2	V _{GS} value has been changed on <i>Table 2</i> and <i>Table 5</i>
20-Apr-2009	3	 Inserted typical maximum value in V_{GS(th)} parameter Figure 5: Transfer characteristics has been updated Added device in TO-220
05-Apr-2011	4	 Added device in Short IPAK Added max values in <i>Table 5: Dynamic</i> V_{GS} value has been changed in <i>Table 2</i> and <i>Table 4</i>
09-Aug-2013	5	The part numbers STP60N3LH5, STU60N3LH5 and STU60N3LH5-S have been moved to a separate datasheet

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ST PRODUCTS DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

DocID14079 Rev 5