100 A

## International **ICR** Rectifier

### **STANDARD DIODES**

## **IRK.91..PbF SERIES**

ADD-A-pak<sup>™</sup> GEN V Power Modules

### Features

- High Voltage
- Industrial Standard Package
- Thick copper baseplate
- UL E78996 approved
- 3500V<sub>RMS</sub> isolating voltage TOTALLYLEAD-FREE

### Mechanical Description

The Generation V of Add-A-pak module combine the excellent thermal performance obtained by the usage of Direct Bonded Copper substrate with superior mechanical ruggedness, thanks to the insertion of a solid Copper baseplate at the bottom side of the device. The Cu baseplate allow an easier mounting on the majority of heatsink with increased tolerance of surface roughness and improve thermal spread.

The Generation V of AAP module is manufactured without hard mold, eliminating in this way any possible direct stress on the leads.

| eters            | IRK.91                                                   | Units                                                                                                                                   |  |  |
|------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                  | 100                                                      | A                                                                                                                                       |  |  |
| @ T <sub>c</sub> | 100                                                      | °C                                                                                                                                      |  |  |
|                  | 157                                                      | А                                                                                                                                       |  |  |
| @50Hz            | 2020                                                     | А                                                                                                                                       |  |  |
| @60Hz            | 2110                                                     | A                                                                                                                                       |  |  |
| @50Hz            | KA <sup>2</sup> s                                        |                                                                                                                                         |  |  |
| @60Hz            | 18.65                                                    | KA <sup>2</sup> s                                                                                                                       |  |  |
|                  | 204.3                                                    | KA <sup>2</sup> √s                                                                                                                      |  |  |
| ange             | 400 to 1600                                              | V                                                                                                                                       |  |  |
|                  | - 40 to 150                                              | °C                                                                                                                                      |  |  |
|                  | -40 to150                                                | °C                                                                                                                                      |  |  |
|                  | @ T <sub>C</sub><br>@ 50Hz<br>@ 60Hz<br>@ 50Hz<br>@ 60Hz | 100   @ T <sub>c</sub> 100   157 2020   @ 50Hz 2020   @ 60Hz 2110   @ 50Hz 20.43   @ 60Hz 18.65   204.3   ange 400 to 1600   -40 to 150 |  |  |

Document Number: 94359

www.vishay.com

they are fixed to the module housing via a click-stop feature already tested and proved as reliable on other IR modules.

### **Electrical Description**

These modules are intended for general purpose high voltage applications such as high voltage regulated power supplies, lighting circuits, temperature and motor speed control circuits, UPS and battery charger.

The electrical terminals are secured against axial pull-out:

Full compatible TO-240AA

Easy Mounting on heatsink

**Benefits** 

High Surge capability

Al<sub>2</sub>0<sub>3</sub> DBC insulator

Heatsink grounded

Up to 1600V



**IRK.91 Series** 

Bulletin I27212 03/06

### International **10** Rectifier

### ELECTRICAL SPECIFICATIONS

### Voltage Ratings

|             | Voltage | $V_{RRM}^{}$ , maximum repetitive | V <sub>RSM</sub> , maximum non- | I <sub>RRM</sub> max.    |  |  |
|-------------|---------|-----------------------------------|---------------------------------|--------------------------|--|--|
| Type number | Code    | peak reverse voltage              | repetitive peak rev. voltage    | @ T <sub>J</sub> = 150°C |  |  |
|             |         | V                                 | V                               | mA                       |  |  |
|             | 04      | 400                               | 500                             |                          |  |  |
|             | 06      | 600                               | 700                             |                          |  |  |
| IRK.91      | 08      | 800                               | 900                             |                          |  |  |
|             | 10      | 1000                              | 1100                            | 10                       |  |  |
|             | 12      | 1200                              | 1300                            |                          |  |  |
|             | 14      | 1400                              | 1500                            |                          |  |  |
|             | 16      | 1600                              | 1700                            |                          |  |  |

### Forward Conduction

|                     | Parameter                                    | IRK.91 | Units             | Conditions                                                                                                                                                |                       |                                              |  |  |
|---------------------|----------------------------------------------|--------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------|--|--|
| I <sub>F(AV)</sub>  | Max. average forward current                 | 100    | Α                 | 180° conduction, half sine wave                                                                                                                           |                       |                                              |  |  |
| . (,)               | @ Case temperature                           | 100    | °C                |                                                                                                                                                           |                       |                                              |  |  |
| I <sub>F(AV)</sub>  | Max. average forward current                 | 90     | Α                 | 180° conduction, half sine wave                                                                                                                           |                       |                                              |  |  |
|                     | @ Case temperature                           | 107    | °C                |                                                                                                                                                           |                       |                                              |  |  |
| I <sub>F(RMS)</sub> | Max. RMS forward current                     | 157    | Α                 | DC @ 90°                                                                                                                                                  | C case tempera        | arure                                        |  |  |
| I <sub>FSM</sub>    | Max. peak, one-cycle forward,                | 2020   |                   | t = 10ms                                                                                                                                                  | No voltage            |                                              |  |  |
|                     | non-repetitive surge current                 | 2110   |                   | t = 8.3ms                                                                                                                                                 | reapplied             |                                              |  |  |
|                     |                                              | 1700   | A                 | t = 10ms                                                                                                                                                  | 100% V <sub>RRM</sub> |                                              |  |  |
|                     |                                              | 1780   |                   | t = 8.3ms                                                                                                                                                 | reapplied             | Sinusoidal half wave,                        |  |  |
| l²t                 | Maximum I <sup>2</sup> t for fusing          | 20.43  |                   | t = 10ms                                                                                                                                                  | No voltage            | Initial T <sub>1</sub> = T <sub>1</sub> max. |  |  |
|                     |                                              | 18.65  |                   | t = 8.3ms                                                                                                                                                 | reapplied             |                                              |  |  |
|                     |                                              | 14.45  | KA <sup>2</sup> s | t = 10ms                                                                                                                                                  | 100% V <sub>RRM</sub> |                                              |  |  |
|                     |                                              | 13.19  |                   | t = 8.3ms                                                                                                                                                 | reapplied             |                                              |  |  |
| I²√t                | Maximum I <sup>2</sup> Öt for fusing         | 204.3  | KA²√s             | t = 0.1 to 10ms, no voltage reapplied                                                                                                                     |                       |                                              |  |  |
| V <sub>F(TO)1</sub> | Low level value of threshold voltage         | 0.79   | V                 | $(16.7\% \times \pi \times I_{F(AV)} < I < \pi \times I_{F(AV)}), T_{J} = T_{J} max.$                                                                     |                       |                                              |  |  |
| V <sub>F(TO)2</sub> | High level value of threshold voltage        | 0.87   |                   | $(I > \pi \times I_{F(AV)}), T_J = T_J max.$                                                                                                              |                       |                                              |  |  |
| r <sub>f1</sub>     | Low level value of forward slope resistance  | 1.78   |                   | $(16.7\% \times \pi \times I_{F(AV)} < I < \pi \times I_{F(AV)}), T_{J} = T_{J} \text{ max.}$<br>$(I > \pi \times I_{F(AV)}), T_{J} = T_{J} \text{ max.}$ |                       |                                              |  |  |
| r <sub>f2</sub>     | High level value of forward slope resistance | 1.57   | mΩ                |                                                                                                                                                           |                       |                                              |  |  |
| V <sub>FM</sub>     | Max. forward voltage drop                    | 1.45   | V                 | $I_{FM} = p \times I_{F(AV)}, T_{J} = 25^{\circ}C, t_{p} = 400 \mu s square wave$                                                                         |                       |                                              |  |  |

### Blocking

|                  | Parameter                            | IRK.91       | Units | Conditions                                    |
|------------------|--------------------------------------|--------------|-------|-----------------------------------------------|
| I <sub>RRM</sub> | Max. peak reverse leakage<br>current | 10           | mA    | T <sub>J</sub> = 150°C                        |
| V <sub>INS</sub> | RMS isolation voltage                | 3500 (1 sec) | V     | 50 Hz, circuit to base, all terminals shorted |

Document Number: 94359

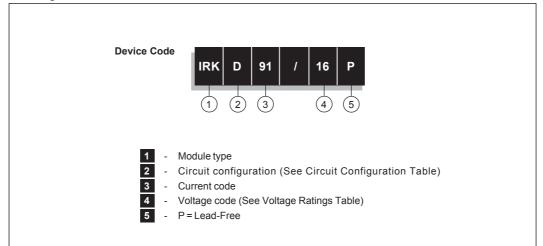
www.vishay.com 2

# International

### **IRK.91 Series**

Bulletin 127212 04/06

### Thermal and Mechanical Specifications

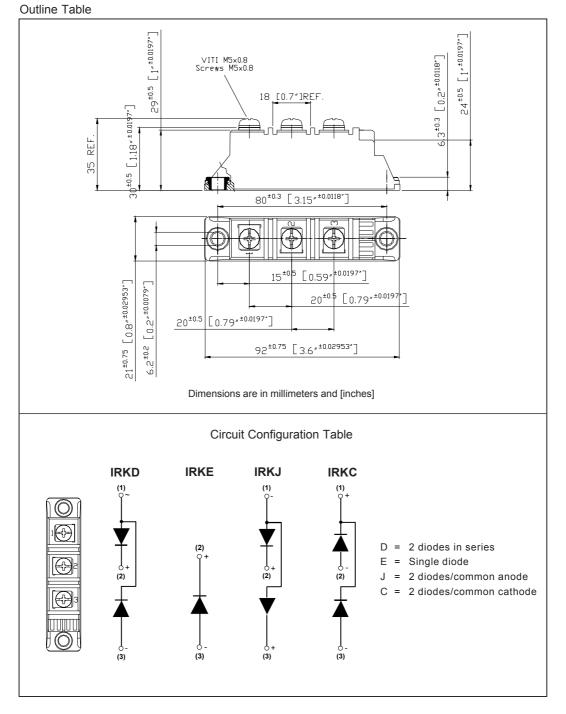

|                   | Parameter                     |             | IRK.91   | Units                                     | Conditions                                                                                         |
|-------------------|-------------------------------|-------------|----------|-------------------------------------------|----------------------------------------------------------------------------------------------------|
| Tj                | Max. junction operating temp  | -40 to 150  | °C       |                                           |                                                                                                    |
| T <sub>stg</sub>  | Storage temperature range     | -40 to 150  |          |                                           |                                                                                                    |
| R <sub>thJC</sub> | Max. thermal resistance, jur  | 0.35        |          | Per junction, DC operation                |                                                                                                    |
| R <sub>thCS</sub> | Typical thermal resistance, c | 0.1         | K/W      | Mounting surface flat, smooth and greased |                                                                                                    |
| Т                 | Mounting torque ±10%          | to heatsink | 5        | Nm                                        | A mounting compound is recommended and the<br>torgue should be rechecked after a period of 3 hours |
|                   |                               | busbar      | 4        |                                           | to allow for the spread of the compound                                                            |
| wt                | Approximate weight            |             | 110 (4)  | g (oz)                                    |                                                                                                    |
|                   | Case style                    |             | TO-240AA |                                           | JEDEC                                                                                              |

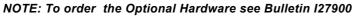
### $\Delta R$ Conduction (per Junction)

(The following table shows the increment of thermal resistance R<sub>thJC</sub> when devices operate at different conduction angles than DC)

| Devices |       | Sine  | half way | e conduc | ction | Rect. wave conduction |       |       |       | Units |      |
|---------|-------|-------|----------|----------|-------|-----------------------|-------|-------|-------|-------|------|
|         | 180°  | 120°  | 90°      | 60°      | 30°   | 180°                  | 120°  | 90°   | 60°   | 30°   |      |
| IRK.91  | 0.052 | 0.064 | 0.082    | 0.112    | 0.164 | 0.043                 | 0.069 | 0.088 | 0.115 | 0.165 | °C/W |

### Ordering Information Table





Document Number: 94359

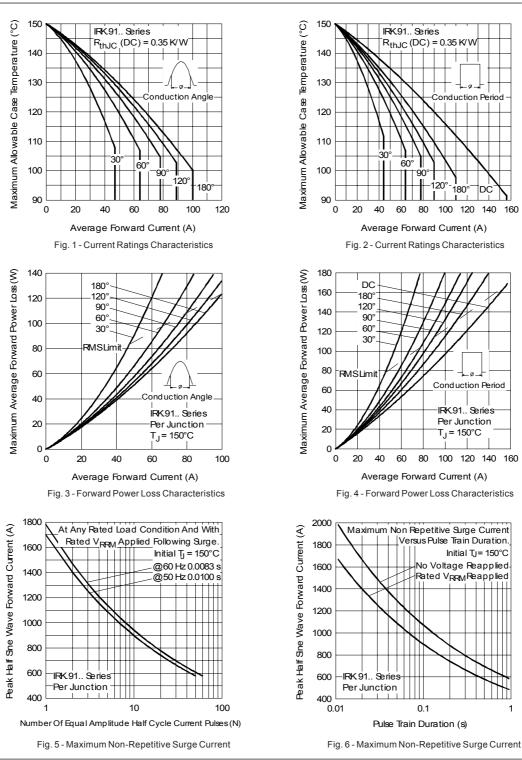
### **IRK.91 Series**

Bulletin I27212 03/06

International





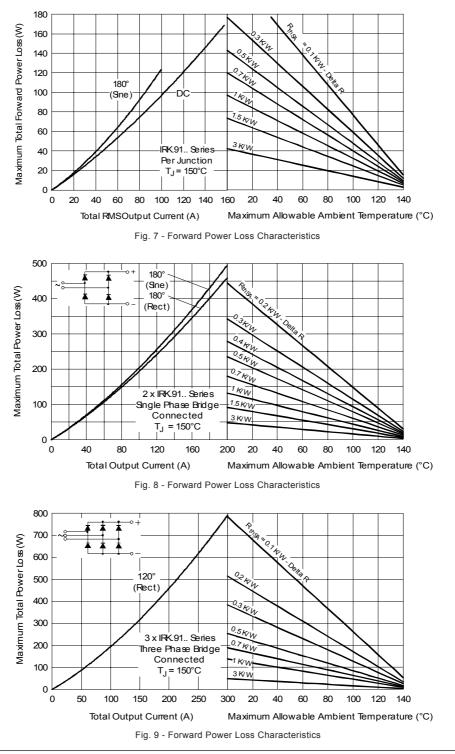

Document Number: 94359

www.vishay.com 4

### International **TOR** Rectifier

### **IRK.91 Series**

Bulletin 127212 04/06



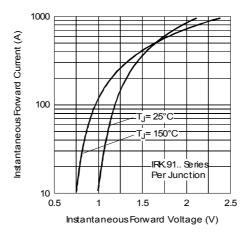

Document Number: 94359

www.vishay.com 5

IRK.91 Series Bulletin 127212 03/06

# International




Document Number: 94359

www.vishay.com 6

## International

### **IRK.91 Series**

Bulletin 127212 04/06





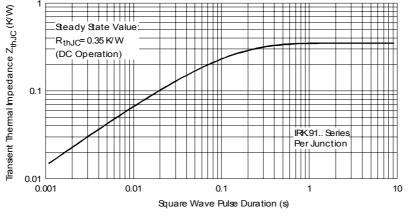



Fig. 11 - Thermal Impedance  $\rm Z_{thJC}$  Characteristic

Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level and Lead-Free. Qualification Standards can be found on IR's Web site.

International

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7309 03/06

> www.vishay.com 7

Document Number: 94359



Vishay

### Notice

The products described herein were acquired by Vishay Intertechnology, Inc., as part of its acquisition of International Rectifier's Power Control Systems (PCS) business, which closed in April 2007. Specifications of the products displayed herein are pending review by Vishay and are subject to the terms and conditions shown below.

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

International Rectifier<sup>®</sup>, IR<sup>®</sup>, the IR logo, HEXFET<sup>®</sup>, HEXSense<sup>®</sup>, HEXDIP<sup>®</sup>, DOL<sup>®</sup>, INTERO<sup>®</sup>, and POWIRTRAIN<sup>®</sup> are registered trademarks of International Rectifier Corporation in the U.S. and other countries. All other product names noted herein may be trademarks of their respective owners.